精英家教網 > 高中數學 > 題目詳情
設f(x)=2x3+ax2+bx+1的導數為f′(x),若函數y=f′(x)的圖象關于直線x=對稱,且f′(1)=0,
(Ⅰ)求實數a,b的值;
(Ⅱ)求函數f(x)的極值。
解:(Ⅰ)
∵若函數y=f′(x)的圖象關于直線x=對稱,且f′(1)=0,
,解得a=3,b=-12。
(Ⅱ)由(Ⅰ)知,

f(x)的變化如下:
 
∴當x=-2時,f(x)取極大值,極大值為21;
當x=1時,f(x)取極小值,極小值為-6。
練習冊系列答案
相關習題

科目:高中數學 來源:數學教研室 題型:013

f(x)=(2x3-3)(x2-5),則f ¢(x)等于(。

A10x4-30x2-6x      B6x4-30x2         C12x3                    D4x4-6x2

 

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=(2x3-3)(x2-5),則f′(x)等于

A.10x4-30x2-6x                                            B.12x3

C.6x4-30x2                                                                                                         D.4x4-6x

查看答案和解析>>

科目:高中數學 來源:2011-2012學年海南省高三第六次月考理科數學試卷(解析版) 題型:解答題

設f(x)=2x3+ax+bx+1   的導數為,若函數的圖象關于直線 對稱,且.](Ⅰ)求實數,的值;(5分)(Ⅱ)求函數的極值

 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設f(x)=(2x3-3)(x2-5),則f′(x)等于


  1. A.
    10x4-30x2-6x
  2. B.
    12x3
  3. C.
    6x4-30x2
  4. D.
    4x4-6x

查看答案和解析>>

同步練習冊答案