判斷:到x軸距離為2的點(diǎn)的直線方程為y=-2。 (    )

答案:錯(cuò)
提示:

因到x軸距離為2的點(diǎn)的直線方程還有一個(gè);y=2,即不具備完備性。∴結(jié)論錯(cuò)誤。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P到x軸的距離比它到點(diǎn)(0,1)的距離小1,稱點(diǎn)P的軌跡為曲線C,點(diǎn)M為直線l:y=-m (m>0)上任意一點(diǎn),過(guò)點(diǎn)M作曲線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
(1)求曲線C的軌跡方程;
(2)當(dāng)M的坐標(biāo)為(0,-l)時(shí),求過(guò)M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程,并判斷直線l與此圓的位置關(guān)系;
(3)當(dāng)m變化時(shí),試探究直線l上是否存在點(diǎn)M,使MA⊥MB?若存在,有幾個(gè)這樣的點(diǎn),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

判斷:到x軸距離為2的點(diǎn)的直線方程為y=-2。 (    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且

(1)求動(dòng)點(diǎn)P所在曲線C的方程;

(2)直線過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過(guò)A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,試判斷點(diǎn)F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);

(3)記,(A、B、是(2)中的點(diǎn)),問(wèn)是否存在實(shí)數(shù),使成立.若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

進(jìn)一步思考問(wèn)題:若上述問(wèn)題中直線、點(diǎn)、曲線C:,則使等式成立的的值仍保持不變.請(qǐng)給出你的判斷            (填寫(xiě)“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.

(1)求動(dòng)點(diǎn)P所在曲線C的方程;

(2)直線過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)AB不在x軸上),分別過(guò)AB點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,試判斷點(diǎn)F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);

(3)記,,(A、B、是(2)中的點(diǎn)),問(wèn)是否存在實(shí)數(shù),使成立.若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

進(jìn)一步思考問(wèn)題:若上述問(wèn)題中直線、點(diǎn)、曲線C:,則使等式成立的的值仍保持不變.請(qǐng)給出你的判斷            (填寫(xiě)“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案