分析:由已知中a,b∈{-3,-2,-1,1,2,3}且a≠b,我們可以列舉出所有(a,b)點(diǎn)的個(gè)數(shù)及復(fù)數(shù)z=a+bi對(duì)應(yīng)點(diǎn)在第二象限的基本事件個(gè)數(shù),代入古典概型概率計(jì)算公式,即可得到答案.
解答:∵a,b∈{-3,-2,-1,1,2,3}且a≠b,
則(a,b)點(diǎn)共有
(-3,-2),(-3,-1),(-3,1),(-3,2),(-3,3),
(-2,-3),(-2,-1),(-2,1),(-2,2),(-2,3),
(-1,-3),(-1,-2),(-1,1),(-1,2),(-1,3),
(1,-3),(1,-2),(1,-1),(1,2),(1,3),
(2,-3),(2,-2),(2,-1),(2,1),(3,1),
(3,-3),(3,-2),(3,-1),(3,1),(3,2),共30種情況
其中a<0,b>0,即復(fù)數(shù)z=a+bi對(duì)應(yīng)點(diǎn)在第二象限共有:
(-3,1),(-3,2),(-3,3),(-2,1),(-2,2),
(-2,3),(-1,1),(-1,2),(-1,3),共9種情況
故復(fù)數(shù)z=a+bi對(duì)應(yīng)點(diǎn)在第二象限的概率P=
=
故答案為:
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是古典概型及其概率計(jì)算公式,其中分別計(jì)算出基本事件的總數(shù)及滿足條件的基本事件個(gè)數(shù)是解答本題的關(guān)鍵.