【題目】如圖,已知四棱錐中,底面為菱形,平面,,分別是,的中點.

1)證明:;

2)取,若上的動點,與面所成最大角的正弦值為,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)由已知條件推導出為正三角形,從而得到,,再由平面,得到,由此能證明平面,從而得到結論.
2上任意一點,連接,,則與平面所成的角,當最短時,即當時,最大,由此能求出二面角的余弦值.

1)證明:∵四邊形為菱形,,

為正三角形,

的中點,∴

又∵,∴,

平面平面,

平面,平面,

平面,又平面

所以.

2)解:設,上任意一點,連接,,如圖

由(1)知平面,

所以與平面所成的角,

中,

所以當最短時,最大,即當時,最大,

因為,

此時

因此,又,

所以,所以,

因為平面,平面

所以平面平面,

,

平面,

,連接,

為二面角的平面角,如圖

中,,,

的中點,在中,,

,,

中,

即所求二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.

(Ⅰ)求證:

(Ⅱ)若點在線段上,且平面,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

41

47

415

421

430

溫差

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;

2)從這5天中任選2天,若選取的是41日與430日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出y關于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:回歸直線的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調性;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,證明:;

2)若有且只有一個零點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若在定義域內單調遞增,求的值;

2)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬元,每生產(chǎn)千件需另投入萬元.設該公司一年內共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

1)求證:

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在創(chuàng)國家級衛(wèi)生縣城的評估標準中,有一項是市民對該項政策的知曉率,專家在對某縣進行評估時,從該縣的鄉(xiāng)鎮(zhèn)中隨機抽取市民進行調查.知曉率達90%以上記為合格,否則記為不合格.已知該縣的10個鄉(xiāng)鎮(zhèn)中,有7個鄉(xiāng)鎮(zhèn)市民的知曉率可達90%以上,其余的均在90%以下.

(1)現(xiàn)從這10個鄉(xiāng)鎮(zhèn)中隨機抽取3個進行調查,求抽到的鄉(xiāng)鎮(zhèn)中恰有2個鄉(xiāng)鎮(zhèn)不合格的概率;

(2)若記從該縣隨機抽取的3個鄉(xiāng)鎮(zhèn)中不合格的鄉(xiāng)鎮(zhèn)的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案