【題目】如圖,已知四棱錐中,底面為菱形,平面,,分別是,的中點.
(1)證明:;
(2)取,若為上的動點,與面所成最大角的正弦值為,求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)由已知條件推導出為正三角形,從而得到,,再由平面,得到,由此能證明平面,從而得到結論.
(2)為上任意一點,連接,,則為與平面所成的角,當最短時,即當時,最大,由此能求出二面角的余弦值.
(1)證明:∵四邊形為菱形,,
∴為正三角形,
∵為的中點,∴
又∵,∴,
∵平面,平面,
∴
而平面,平面,,
∴平面,又平面,
所以.
(2)解:設,為上任意一點,連接,,如圖
由(1)知平面,
所以為與平面所成的角,
在中,,
所以當最短時,最大,即當時,最大,
因為,
此時,
因此,又,
所以,所以,
因為平面,平面,
所以平面平面,
過作于,
則平面,
過作于,連接,
則為二面角的平面角,如圖
在中,,,
又是的中點,在中,,
又,,
在中,,
即所求二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出y關于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬元,每生產(chǎn)千件需另投入萬元.設該公司一年內共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在創(chuàng)國家級衛(wèi)生縣城的評估標準中,有一項是市民對該項政策的知曉率,專家在對某縣進行評估時,從該縣的鄉(xiāng)鎮(zhèn)中隨機抽取市民進行調查.知曉率達90%以上記為合格,否則記為不合格.已知該縣的10個鄉(xiāng)鎮(zhèn)中,有7個鄉(xiāng)鎮(zhèn)市民的知曉率可達90%以上,其余的均在90%以下.
(1)現(xiàn)從這10個鄉(xiāng)鎮(zhèn)中隨機抽取3個進行調查,求抽到的鄉(xiāng)鎮(zhèn)中恰有2個鄉(xiāng)鎮(zhèn)不合格的概率;
(2)若記從該縣隨機抽取的3個鄉(xiāng)鎮(zhèn)中不合格的鄉(xiāng)鎮(zhèn)的個數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com