已知橢圓上的點到其兩焦點距離之和為,且過點.
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標原點,斜率為的直線過橢圓的右焦點,且與橢圓交于點,,若,求△的面積.
(Ⅰ)(Ⅱ)1
解析試題分析:(Ⅰ)由橢圓的定義及橢圓的幾何性質(zhì)易得, ,即可得其橢圓方程。(Ⅱ)設出直線方程,然后聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程,再根據(jù)韋達定理得出根與系數(shù)的關(guān)系式。先求出再將、代入求得的值,由弦長公式求出,再用點到線的距離公式其點到直線的距離,此距離即為△底邊上的高。用三角形面積公式可求得△的面積。
試題解析:解(Ⅰ)依題意有,.
故橢圓方程為. 5分
(Ⅱ)因為直線過右焦點,設直線的方程為 .
聯(lián)立方程組
消去并整理得. (*)
故,.
.
又,即.
所以,可得,即.
方程(*)可化為,由,可得.
原點到直線的距離.
所以. 13分
考點:1橢圓的基礎知識;2直線與橢圓的位置關(guān)系;3弦長公式;4點到直線的距離。
科目:高中數(shù)學 來源: 題型:解答題
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.
(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知頂點是坐標原點,對稱軸是軸的拋物線經(jīng)過點.
(1)求拋物線的標準方程;
(2)直線過定點,斜率為,當為何值時,直線與拋物線有公共點?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:經(jīng)過如下五個點中的三個點:,,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點為橢圓的左頂點,為橢圓上不同于點的兩點,若原點在的外部,且為直角三角形,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的離心率為且與雙曲線:有共同焦點.
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點作的切線,求與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓的左、右頂點分別為,過橢圓上的一點作軸的垂線交軸于點,若點滿足,,連結(jié)交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,直線PE、PF與圓()相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義:對于兩個雙曲線,,若的實軸是的虛軸,的虛軸是的實軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請加以證明.
(3)求值:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com