(本小題滿分14分)
已知函數(shù)滿足,對于任意R都有,且
,令.
(1)求函數(shù)的表達式;
(2)求函數(shù)的單調(diào)區(qū)間;
研究函數(shù)在區(qū)間上的零點個數(shù).
(本小題主要考查二次函數(shù)、函數(shù)的性質(zhì)、函數(shù)的零點、分段函數(shù)等知識, 考查函數(shù)與方程、分類與整合的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力、運算求解能力和應(yīng)用意識)
(1) 解:∵,∴.                                         …… 1分               
∵對于任意R都有,
∴函數(shù)的對稱軸為,即,得.       …… 2分
,即對于任意R都成立,
,且
    ∵,     ∴
    ∴.                                             …… 4分
(2) 解:            …… 5分
① 當時,函數(shù)的對稱軸為,
,即,函數(shù)上單調(diào)遞增;        …… 6分
,即,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.
…… 7分
② 當時,函數(shù)的對稱軸為
 則函數(shù)上單調(diào)遞增,在上單調(diào)遞減.  …… 8分
綜上所述,當時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
;                                                     …… 9分
時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
.                                        …… 10分
(3)解:① 當時,由(2)知函數(shù)在區(qū)間上單調(diào)遞增,
     又,
     故函數(shù)在區(qū)間上只有一個零點.                      …… 11分
    ② 當時,則,而,
    ,
(ⅰ)若,由于
,
此時,函數(shù)在區(qū)間上只有一個零點;                    …… 12分
    (ⅱ)若,由于,此時,函數(shù)在區(qū)間  
上有兩個不同的零點.                                         …… 13分
    綜上所述,當時,函數(shù)在區(qū)間上只有一個零點;
         當時,函數(shù)在區(qū)間上有兩個不同的零點.   …… 14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( (本小題滿分13分)
隨著國家政策對節(jié)能環(huán)保型小排量車的調(diào)整,兩款1.1升排量的Q型車、R型車的銷量引起市場的關(guān)注.已知2010年1月Q型車的銷量為a輛,通過分析預(yù)測,若以2010年1月為第1月,其后兩年內(nèi)Q型車每月的銷量都將以1%的比率增長,而R型車前n個月的銷售總量Tn大致滿足關(guān)系式:Tn=228a(1.012n-1).(n≤24,n∈N*)
(1)求Q型車前n個月的銷售總量Sn的表達式;
(2)比較兩款車前n個月的銷售總量SnTn的大小關(guān)系;
(3)試問從第幾個月開始Q型車的月銷售量小于R型車月銷售量的20%,并說明理由.
(參考數(shù)據(jù):≈1.09,≈8.66)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)函數(shù),方程有唯一解,其中實數(shù)為常數(shù),,
(1)求的表達式;
(2)求的值;
(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


方程的解集為用列舉法表示為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),當時,恒成立, 則的最大值與最小值之和為
A.18B.16 C.14D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

今有一組實驗數(shù)據(jù)如圖:現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最接近的一個是( ▲ )

1.99
3.0
4.0
5.1
6.12

1.5
4.04
7.5
12
18.01
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)上增減性,并進行證明;
(3)若時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)的兩實根;的兩實根。若,則實數(shù)的取值范圍是            ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,當恒成立,實數(shù)的取值范圍為       

查看答案和解析>>

同步練習(xí)冊答案
<rt id="6ukmy"></rt><ul id="6ukmy"><code id="6ukmy"></code></ul>
<center id="6ukmy"><code id="6ukmy"></code></center>
<li id="6ukmy"><th id="6ukmy"></th></li>
    <cite id="6ukmy"></cite>