【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(Ⅱ)估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(Ⅲ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算關(guān)于的回歸方程.

回歸直線的斜率和截距的最小二乘估計公式分別為.

【答案】(Ⅰ)2()5()

【解析】

試題分析:(1)由頻率分布直方圖各小長方形面積總和為1,建立方程,即可求得結(jié)論;(2)利用組中值,求出對應(yīng)銷售收益的平均值;(3)利用公式求出b,a,即可計算y關(guān)于x的回歸方程

試題解析:() 設(shè)各小長方形的寬度為,

由頻率分布直方圖各小長方形面積總和為1

可知,

;

() ()知各小組依次是,

其中點分別為,

對應(yīng)的頻率分別為,

故可估計平均值為

;

() 空白欄中填5. 由題意可知,

,

,

根據(jù)公式,可求得,

即回歸直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的離心率為 ,橢圓Cy軸交于A、B兩點,|AB|=2

)求橢圓C的方程;

)已知點P是橢圓C上的動點,且直線PA,PB與直線x=4分別交于MN兩點,是否存在點P,使得以MN為直徑的圓經(jīng)過點(20)?若存在,求出點P的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線平面,直線平面,給出下列命題:

; ;

;

其中正確命題的序號是

A.①②③ B.②③④ C.①③ D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,處的切線與直線平行.

1討論的單調(diào)性;

2,上恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點:

(1)位于虛軸上?

(2)位于一、三象限?

(3)位于以原點為圓心,以4為半徑的圓上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若對任意,都有成立,求的值值范圍;

(2)若先將的圖象上每個點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移個單位得到函數(shù)的圖象,求函數(shù)在區(qū)間內(nèi)的所有零點之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。

(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;

(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有一條光線從射出,并且經(jīng)軸上一點反射.

(1)求入射光線和反射光線所在的直線方程(分別記為);

(2)設(shè)動直線,當(dāng)點的距離最大時,求所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.

查看答案和解析>>

同步練習(xí)冊答案