設y=x2+ax+b,A={x|y=x}={a},M={(a,b)},求M.
分析:由A={a}得x2+ax+b=x的兩個根x1=x2=a,利用根與系數(shù)的關系即可得出.
解答:解:由A={a}得x2+ax+b=x的兩個根x1=x2=a,
即x2+(a-1)x+b=0的兩個根x1=x2=a,
x1+x2=1-a=2a,得a=
1
3
,
x1x2=b=a2=
1
9

M={(
1
3
,
1
9
)}
點評:本題考查了一元二次方程的根與系數(shù)的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2+ax+b的圖象在點P(0,f(0))處的切線方程為y=3x-2.
(1)求實數(shù)a,b的值;
(2)設h(x)=f(x)-6x(x∈R),求函數(shù)h(x)的極大值和極小值;
(3)設f(x)=f(x)+
m
x-1
是[2,+∞)上的增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
13
x3-x2+ax+b
的圖象在點x=0處的切線方程為y=3x-2.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設f′(x)≥6,求此不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知矩陣A=
33
24
,向量β=
6
8
,
(Ⅰ)求矩陣A的特征值和對應的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點A、B的極坐標分別為(1,0)、(1,
π
2
)
,曲線C的參數(shù)方程為
x=rcosα
y=rsinα
為參數(shù),r>0)
(Ⅰ)求直線AB的直角坐標方程;
(Ⅱ)若直線AB和曲線C只有一個交點,求r的值.
(3)設不等式|x-2|>1的解集與關于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+ax+b,點(a,b)為函數(shù)y=
5-2x
x-2
的對稱中心,設數(shù)列{an},{bn}滿足4an+1=f(an)+2an+2(n∈N*),a1=6,且bn=
1
an+4
,{bn}的前n項和為Sn
(1)求a,b的值;
(2)求證:Sn
1
6
;
(3)求證:an+2>22n-1+2

查看答案和解析>>

同步練習冊答案