方程|ax-1|=
a
2
有兩個(gè)不同的實(shí)數(shù)根,則a的取值范圍是
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先畫出a>1和0<a<1時(shí)的兩種圖象,根據(jù)圖象可直接得出答案.
解答: 解:當(dāng)a=1時(shí),解得|
據(jù)題意,函數(shù)y=|ax-1|(a>0,a≠1)的圖象與直線y=
a
2
有兩個(gè)不同的交點(diǎn).
a>1時(shí)

0<a<1時(shí)

由圖知,0<
a
2
<1,
因?yàn)楫?dāng)a=1時(shí),|1x-1|=
1
2
,方程無解,故a≠1,
綜上所述,a的取值范圍是(0,1)∪(1,2)
故答案為:(0,1)∪(1,2)
點(diǎn)評:本題主要考查指數(shù)函數(shù)的圖象,對于指數(shù)函數(shù)的圖象要分兩種情況來考慮,即a>1和0<a<1.屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|
x+y-1≥0
2x-y-2≤0
},B={(x,y)|ax-2y-2≤0},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A、[-1,2]
B、[-2,2]
C、(-1,2]
D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log 
1
2013
π,b=(
1
5
-0.8,c=lgπ,則( 。
A、a<b<c
B、a<c<b
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-4x-2y-20=0,它的參數(shù)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰三角形的底角的正弦值等于
4
5
,求這個(gè)三角形的頂角的正弦、余弦和正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(α-π)=-
2
3
,求
sin(α-2π)+sin(-α-3π)cos(α-3π)
cos(π-α)-cos(-π-α)cos(α-4π)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=lgx+lg(2-x)的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列語句:①太陽是繞著地球轉(zhuǎn)的
②禽流感能人傳人嗎?
③{1,2,3}⊆R;
④|x+a|;
⑤a+2
3
是有理數(shù)
⑥奇數(shù)的偶次方是偶數(shù)
其中命題的個(gè)數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ex
(Ⅰ)求函數(shù)y=f(x)-x的單調(diào)區(qū)間;
(Ⅱ)證明:函數(shù)y=f(x)和y=g(x)在公共定義域內(nèi),g(x)-f(x)>2;
(Ⅲ)若存在兩個(gè)實(shí)數(shù)x1,x2且x1≠x2,滿足f(x1)=ax1,f(x2)=ax2.求證:x1x2>e2

查看答案和解析>>

同步練習(xí)冊答案