(本小題滿分12分)

攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應(yīng)時刻注意兩人離地面的距離,以備發(fā)生危險時進行及時救援. 為了方便測量和計算,畫出示意圖,如圖(2)所示,點分別為兩名攀巖者所在位置,點為山的拐角處,且斜坡AB的坡角為,點為山腳,某人在地面上的點處測得的仰角分別為, ,

求:(Ⅰ)點間的距離及點間的距離;

(Ⅱ)在點處攀巖者距地面的距離.

 

【答案】

(Ⅰ)在直角三角形中,

在直角三角形中,

(Ⅱ)

【解析】

試題分析:(1)根據(jù)題意得∠CED=γ,∠ABE=β,∠AED=α,借助圖形分別在直角三角形CED和直角三角形BED中求解;

(2)在直角三角形中先求出AE,BE,然后在△ABE中利用正弦定理即可求得.

解:(Ⅰ)根據(jù)題意得

在直角三角形中,

在直角三角形中,

(Ⅱ)易得

中,

正弦定理

考點:本試題主要考查了學(xué)生讀題識圖的能力,還考查了利用直角三角形求解三角形中的知識及利用正弦定理求解三角形.

點評:解決該試題的關(guān)鍵是對于正弦定理和余弦定理的熟練運用。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案