已知0<α<π,sinα+cosα=
15
,求tanα的值.
分析:將已知等式平方并結(jié)合sin2α+cos2α=1,算出2sinαcosα=-
24
25
,由此算出(sinα-cosα)2=
49
25
,得sinα-cosα=
7
5
(舍負(fù))從而解出sinα=
4
5
,cosα=-
3
5
,再利用同角三角函數(shù)的商數(shù)關(guān)系,即可算出tanα的值.
解答:解:∵sinα+cosα=
1
5
…①
∴平方得(sinα+cosα)2=
1
25
,即1+2sinαcosα=
1
25

可得2sinαcosα=-
24
25

因此,(sinα-cosα)2=
49
25
,得sinα-cosα=
7
5
(舍負(fù)),…②
①②聯(lián)解,得sinα=
4
5
,cosα=-
3
5

∴tanα=
sinα
cosα
=-
4
3
點(diǎn)評(píng):本題給出角α的正弦與余弦之和,求α的正切之值.著重考查了同角三角函數(shù)關(guān)系的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,Sn-Sm=qmSn-m恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,Sn-Sm=qmSn-m恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高三(上)第二次效益檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市高郵市界首中學(xué)高三(上)周考數(shù)學(xué)試卷(3)(解析版) 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高三(上)第二次效益檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案