【題目】已知數(shù)列的通項公式是,數(shù)列的通項公式是,集合,將集合中的元素按從小到大的順序排列構成的數(shù)列記為,則數(shù)列的前45項和_______.
【答案】2627
【解析】
隨著增大時,數(shù)列中前后連續(xù)兩項之間的差值越來越大,
故考慮在中的前后連續(xù)兩項之間插入數(shù)列中相應大小的項,然后逐步分析插入的項數(shù),直至滿足題意,從而得出結(jié)果.
解:因為數(shù)列的通項公式是,
所以集合,
隨著增大時,數(shù)列中前后連續(xù)兩項之間的差值越來越大,
故考慮在中的前后連續(xù)兩項之間插入數(shù)列中相應大小的項,
因為是選取新數(shù)列的前45項,
故:,數(shù)列中無項可插入,
,數(shù)列中無項可插入,
,數(shù)列中可插入,增加1項,共5項,
,數(shù)列中可插入,增加2項,共8項,
,數(shù)列中可插入,增加5項,共14項,
,數(shù)列中可插入,增加10項,共25項,
接下來只需再增加中的20項即可,
也就是中從(含)開始的連續(xù)的20項,
因為,
故終止于.
則
.
科目:高中數(shù)學 來源: 題型:
【題目】設常數(shù),已知復數(shù),和,其中均為實數(shù),為虛數(shù)單位,且對于任意復數(shù),有,將作為點的坐標,作為點的坐標,通過關系式,可以看作是坐標平面上點的一個變換,它將平面上的點變到這個平面上的點.
(1)分別寫出和用表示的關系式;
(2)設,當點在圓上移動時,求證:點經(jīng)該變換后得到的點落在一個圓上,并求出該圓的方程;
(3)求證:對于任意的常數(shù),總存在曲線,使得當點在上移動時,點經(jīng)這個變換后得到的點的軌跡是二次函數(shù)的圖像,并寫出對于正常數(shù),滿足條件的曲線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以直角坐標系的原點為極點,軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)設曲線的極坐標方程為,曲線的極坐標方程為,求三條曲線,,所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,.
(1)當時,判斷曲線與曲線的位置關系;
(2)當曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩點分別在軸和軸上運動,且,若動點
滿足,動點的軌跡為.
(1)求的方程;
(2)過點作動直線的平行線交軌跡于兩點,則是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間上任取一個數(shù)記為a,在區(qū)間上任取一個數(shù)記為b.
若a,,求直線的斜率為的概率;
若a,,求直線的斜率為的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人認為在機動車駕駛技術上,男性優(yōu)于女性.這是真的么?某社會調(diào)查機構與交警合作隨機統(tǒng)計了經(jīng)常開車的名駕駛員最近三個月內(nèi)是否有交通事故或交通違法事件發(fā)生,得到下面的列聯(lián)表:
男 | 女 | 合計 | |
無 | 40 | 35 | 75 |
有 | 15 | 10 | 25 |
合計 | 55 | 45 | 100 |
附:.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
據(jù)此表,可得
A. 認為機動車駕駛技術與性別有關的可靠性不足
B. 認為機動車駕駛技術與性別有關的可靠性超過
C. 認為機動車駕駛技術與性別有關的可靠性不足
D. 認為機動車駕駛技術與性別有關的可靠性超過
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,平面,, 是線段的中垂線, ,為線段上的點.
(Ⅰ)證明:平面平面;
(Ⅱ)若為的中點,求異面直線與所成角的正切值;
(Ⅲ)求直線與平面所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com