已知在(x
x
-
1
x3
)
n
的展開式中,第4項是常數(shù)項.
(1)求第6項的二項式系數(shù);
(2)若Cnr-1=Cn3r-2,求r的值.
展開式的第四項T4=
C3n
(x
x
)
n-3
(-
1
x3
)
3
=-
C3n
x
3
2
(n-3)-9

由已知,
3
2
(n-3)-9=0,n=9
(1)第6項的二項式系數(shù)C95=
9×8×7×6×5
5×4×3×2×1
=126.
(2)根據(jù)二項式系數(shù)性質(zhì),可得r-1=3r-2,或r-1+3r-2=9 解得r=
1
2
∉z,舍去.或r=3,∴r的值為3.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知在(x
x
-
1
x3
)
n
的展開式中,第4項是常數(shù)項.
(1)求第6項的二項式系數(shù);
(2)若Cnr-1=Cn3r-2,求r的值.

查看答案和解析>>

同步練習冊答案