已知m>n>1,則當(dāng)a∈(0,)時(shí),有(    )

A.             B.a-m<a-n              C.m-a<n-a                 D.ma<na

C

解析:∵m>n>1,∴-m<-n,.

又∵a∈(0,  ),

,a-m>a-n.

又∵y=xa,a∈(0,),

m>n>1時(shí)是增函數(shù),∴ma>na.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對(duì)稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n,s,t∈R+,m+n=2,
m
s
+
n
t
=9
,其中m、n是常數(shù),當(dāng)s+t取最小
4
9
時(shí),m、n對(duì)應(yīng)的點(diǎn)(m,n)是雙曲線
x2
4
-
y2
2
=1
一條弦的中點(diǎn),則此弦所在的直線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n,s,t∈R+,m+n=2,
m
s
+
n
t
=9
,其中m、n是常數(shù),當(dāng)s+t取最小值
4
9
時(shí),m、n對(duì)應(yīng)的點(diǎn)(m,n)是雙曲線
x2
4
-
y2
2
=1
一條弦的中點(diǎn),則此弦所在的直線方程為
x-2y+1=0
x-2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出以下五個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對(duì)稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)
;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,nβ且m⊥n,則α⊥β;其中正確的結(jié)論是:______.

查看答案和解析>>

同步練習(xí)冊(cè)答案