零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發(fā)生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
【解析】本小題主要考查異面直線所成的角、直線與平面垂直、二面角等基礎知識,考查空間想象能力,運算能力和推理論證能力.滿分12分.
(I)解:因為四邊形ADEF是正方形,所以FA//ED.故為異面直線CE與AF所成的角.
因為FA平面ABCD,所以FACD.故EDCD.
在Rt△CDE中,CD=1,ED=,CE==3,故cos==.
所以異面直線CE和AF所成角的余弦值為.
(Ⅱ)證明:過點B作BG//CD,交AD于點G,則.由,可得BGAB,從而CDAB,又CDFA,FAAB=A,所以CD平面ABF.
(Ⅲ)解:由(Ⅱ)及已知,可得AG=,即G為AD的中點.取EF的中點N,連接GN,則GNEF,因為BC//AD,所以BC//EF.過點N作NMEF,交BC于M,則為二面角B-EF-A的平面角。
連接GM,可得AD平面GNM,故ADGM.從而BCGM.由已知,可得GM=.由NG//FA,FAGM,得NGGM.
在Rt△NGM中,tan,
所以二面角B-EF-A的正切值為.
科目:高中數學 來源: 題型:
編號 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
直徑 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
查看答案和解析>>
科目:高中數學 來源: 題型:
編號 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
直徑 | 1.16 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數據:
其中直徑在區(qū)間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發(fā)生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
查看答案和解析>>
科目:高中數學 來源: 題型:
零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發(fā)生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
查看答案和解析>>
科目:高中數學 來源:2010年高考試題分項版文科數學之專題十一 概率與統(tǒng)計 題型:解答題
(本小題滿分12分)
有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數據:
其中直徑在區(qū)間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;
(ⅱ)求這2個零件直徑相等的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com