設數(shù)列{an}、{bn}的各項都是正數(shù),Sn為數(shù)列{an}的前n項和,且對任意n∈N*,都有,b1=e,,cn=an+1•lnbn(常數(shù)λ>0,lnbn是以為底數(shù)的自然對數(shù),e=2.71828…)
(1)求數(shù)列{an}、{bn}的通項公式;
(2)用反證法證明:當λ=4時,數(shù)列{cn}中的任何三項都不可能成等比數(shù)列;
(3)設數(shù)列{cn}的前n項和為Tn,試問:是否存在常數(shù)M,對一切n∈N*,(1-λ)Tn+λcn≥M恒成立?若存在,求出M的取值范圍;若不存在,請證明你的結論.
【答案】分析:(1)由條件 ①,求得a1=1.當n≥2時,有 ②,由①-②可得數(shù)列{an}是公差等于2的等差數(shù)列,從而求得an=2n-1.再由,且bn>0,可得lnbn=lnb1×λn-1=λn-1,從而求得 bn=
(2)當λ=4時,假設第m項、第n項、第k項成等比數(shù)列,則有 (2n+1)2•42n-2=(2m+1)4m-1•(2k+1)4k-1,即 m2+k2+mk+m+k=0,顯然,這樣的正整數(shù)m、k不存在,故數(shù)列{cn}中的任何三項都不可能成等比數(shù)列.
(3)用錯位相減法求得(1-λ)Tn=3+2λ(1+λ+λ2+…+λn-2)-(2n+1)λn,①當λ=1時,求出M的取值范圍.②當λ≠1時,再求出M的取值范圍,綜合可得結論.
解答:解:(1)∵因為an>0,  ①,當n=1時,a12=4S1-2a1-1,解得a1=1.
當n≥2時,有   ②,
由①-②得,(an+an-1)(an-an-1)=2(an+an-1),故有 an-an-1=2(n≥2),即數(shù)列{an}是公差等于2的等差數(shù)列,
所以an=a1+(n-1)d=1+(n-1)×2=2n-1.
又因為,且bn>0,兩邊同時取自然對數(shù)得 lnbn+1=λlnbn,
由此可知數(shù)列{lnbn}是以lnb1=lne=1為首項,以λ為公比的等比數(shù)列,
所以lnbn=lnb1×λn-1=λn-1,所以,bn=eλn-1.
(2)當λ=4時,由(1)知,cn =an+1•lnbn =(2n+1)•λn-1=(2n+1)•4n-1
假設第m項、第n項、第k項成等比數(shù)列,則有 (2n+1)2•42n-2=(2m+1)4m-1•(2k+1)4k-1,
即 (2n+1)2•42n-2=(2m+1)(2k+1)•4m+k-2,∴,
∴(m+k+1)2=(2m+1)(2k+1),即 m2+k2+mk+m+k=0,顯然,這樣的正整數(shù)m、k不存在,故數(shù)列{cn}中的任何三項都不可能成等比數(shù)列.
(3)解:∵cn=an+1•lnbn =(2n+1)•λn-1,
∴Tn=3×λ0+5×λ1+7×λ2+…+(2n-1)×λn-2+(2n+1)×λn-1…③.
∴λ×Tn=3×λ1+5×λ2+7×λ3+…+(2n-1)×λn-1+(2n+1)×λn…④.
由③-④得-3Tn=3+2×4+2×42+…+2×4n-1-(2n+1)×4n=3+2×-(2n+1)4n=,
所以,(1-λ)Tn=3+2λ(1+λ+λ2+…+λn-2)-(2n+1)λn
①當λ=1時,(1-λ)Tn+λcn=(2n+1)(n∈N*)在N*上為單調遞增函數(shù),所以對于任意常數(shù)M∈(-∞,3],(1-λ)Tn+λcn=(2n+1)≥M恒成立.  
②當λ≠1時,
記g(n)=g(n+1)-g(n)=2λn>0,
所以,數(shù)列g(n)為增函數(shù).   
所以當λ≠1時,g(n)=≥g(1)=3.…(7分)
所以,所以對于任意常數(shù)M∈(-∞,3],(1-λ)Tn+λcn≥M恒成立. …(8分)
點評:本題主要考查數(shù)列求和問題,用反證法和放縮法證明不等式,函數(shù)的恒成立問題,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的首項為1,前n項和是Sn,存在常數(shù)A,B使an+Sn=An+B對任意正整數(shù)n都成立.
(1)設A=0,求證:數(shù)列{an}是等比數(shù)列;
(2)設數(shù)列{an}是等差數(shù)列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)設A>0,A≠1,且
an
an+1
≤M
對任意正整數(shù)n都成立,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)試判斷數(shù)列{bn}是否為等差數(shù)列?并求數(shù)列{bn}的通項公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在實數(shù)a,使得不等式Tn
bn+1
2
log2(a+1)
對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)比較bnbn+1bn+1bn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B為常數(shù).數(shù)列{an}的通項公式為
an=5n-4
an=5n-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn
(1)證明:當b=2時,{an-n•2n-1}是等比數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的通項公式為an=an+b(n∈N*,a>0).數(shù)列{bn}定義如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10;
(2)若a=2,b=-1,求數(shù)列{bm}的前2m項和公式.

查看答案和解析>>

同步練習冊答案