函數(shù)y=
1
x2+1
在x=l處的切線方程是______.
求導(dǎo)函數(shù),可得y′=
-2x
(x2+1)2

x=1時,y′=-
1
2
,y=
1
2
,
∴函數(shù)y=
1
x2+1
在x=l處的切線方程是y-
1
2
=-
1
2
(x-1),即y=-
1
2
x+1

故答案為:y=-
1
2
x+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)y=
1
x2
,y=2x3,y=x2+x,y=1中,冪函數(shù)有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-1|+x2+kx.
(1)若k=2,求函數(shù)y=f(x)的零點;
(2)若函數(shù)y=f(x)在(0,2)內(nèi)有兩個零點x1,x2.求k的取值范圍及
1
x1
+
1
x2
的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。
①集合A={x∈z|x=2k+1,k∈z}與集合B={x|x=2k-1,k∈z}是相等集合;②設(shè)集合A={x|(x-3)(x-a)=0,a∈R},B={x|x2-5x+4=0},則A∪B={1,3,4,a};③函數(shù)y=
x+1
x-1
在區(qū)間[2,6]上的最大值為3;④函數(shù)y=
1
x2
在定義域上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)函數(shù)y=
1
x2+1
在x=l處的切線方程是
y=-
1
2
x+1
y=-
1
2
x+1

查看答案和解析>>

同步練習(xí)冊答案