【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當(dāng)x>1時,f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).
【答案】(1)見解析(2)1
【解析】試題分析:(1)當(dāng)時,對求導(dǎo), 得增區(qū)間,得減區(qū)間,進(jìn)而求出函數(shù)的最小值值,即可證明;(2)若t> ,求得函數(shù)g(x)=x[f(x)+t+1]的導(dǎo)函數(shù),研究其單調(diào)性,根據(jù)零點定理再利用導(dǎo)數(shù)即可判定零點的個數(shù).
試題解析:解:(1)t=1時,f(x)=x﹣﹣2lnx,x>0
∴f′(x)=1+﹣==≥0,
∴f(x)在(1,+∞)上單調(diào)遞增,
∴f(x)>f(1)=1﹣1﹣0=0,
∴x>1,f(x)>0成立,
(2)當(dāng)x∈(0,+∞),g(x)=tx2﹣(t+1)xlnx+(t+1)x﹣1
∴g′(x)=2tx﹣(t+1)lnx,
設(shè)m(x)=2tx﹣(t+1)lnx, ∴m′(x)=2t﹣=,
令m′(x)=0,得x=,
當(dāng)0<x<時,m'(x)<0;當(dāng)時x>,m'(x)>0.
∴g'(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.
∴g'(x)的最小值為g′()=(t+1)(1﹣ln),
∵t>,∴ =+<+<e.
∴g'(x)的最小值g′()=(t+1)(1﹣ln)>0,
從而,g(x)在區(qū)間(0,+∞)上單調(diào)遞增.
又g(1)=2t>0,又g()=+(6+2lnt)﹣1,
設(shè)h(t)=e3t﹣(2lnt+6).
則h′(t)=e3﹣.
令h'(t)=0得t=.由h'(t)<0,得0<t<;
由h'(t)>0,得t>.
∴h(t)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.
∴h(t)min=h()=2﹣2ln2>0.
∴h(t)>0恒成立.∴e3t>2lnt+6,.
∴g()<+﹣1=++﹣1<++﹣1<0.
∴當(dāng)t>時,函數(shù)g(x)恰有1個零點
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測,服藥后每毫升中的含藥量(微克)與時間(小時)之間近似滿足如圖所示的曲線.(當(dāng)時, ).
(1)寫出第一次服藥后與之間的函數(shù)關(guān)系式;
(2)據(jù)進(jìn)一步測定,每毫升血液中含藥量不少于微克時,治療疾病有效,求服藥一次后治療疾病有效時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的動點滿足到點的距離比到直線的距離小1.
(1)求曲線的方程;
(2)動點在直線上,過點分別作曲線的切線,切點為.直線是否恒過定點,若是,求出定點坐標(biāo),若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某DVD光盤銷售部每天的房租、人員工資等固定成本為300元,每張DVD光盤的進(jìn)價是6元,銷售單價與日均銷售量的關(guān)系如表所示:
銷售單價(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均銷售量(張) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)請根據(jù)以上數(shù)據(jù)作出分析,寫出日均銷售量P(x)(張)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式,并寫出其定義域;
(2)問這個銷售部銷售的DVD光盤銷售單價定為多少時才能使日均銷售利潤最大?最大銷售利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)設(shè)(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,試求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是△ABC的三個內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若=-3,求tanC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD和正方形ABEF的邊長都是1,并且平面ABCD⊥平面ABEF,點M在AC上移動,點N在BF上移動.若|CM|=|BN|=a(0<a< ).
(1)求MN的長度;
(2)當(dāng)a為何值時,MN的長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.
(1)若為真命題,求實數(shù)的取值范圍;
(2)如果“或”為真命題,“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com