設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R

(Ⅰ)解不等式f(x)≤5;

(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.

 

【答案】

(Ⅰ) ;(Ⅱ)

【解析】

試題分析:(Ⅰ)解絕對值不等式的關(guān)鍵是去絕對號,有多個絕對號的的不等式,利用零點分段法,分為三種情況,在自變量的不同范圍內(nèi)分別解不等式,再取并集;(Ⅱ)等價于不等式在R內(nèi)恒成立,亦等價于方程在R內(nèi)無解,只需即可,從而得關(guān)于的不等式,進而的的取值范圍.

試題解析:(Ⅰ) 原不等式等價于,解得,或,或,所以不等式的解集為.

(Ⅱ) 若的定義域為R,則恒成立,即在R上無解,又 ,所以.

考點:1、絕對值不等式的解法;2、函數(shù)的定義域.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-xx∈(-∞,1)
x2x∈[1,+∞)
若f(x)>4,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2
-x2+x+2
,對于給定的正數(shù)K,定義函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K
若對于函數(shù)f(x)=2
-x2+x+2
定義域內(nèi)的任意 x,恒有fK(x)=f(x),則(  )
A、K的最大值為2
2
B、K的最小值為2
2
C、K的最大值為1
D、K的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•渭南三模)設(shè)函數(shù)f(x)=
-2,x>0
x2+bx+c,x≤0
若f(-4)=f(0),f(-2)=0,則關(guān)于x的不等式f(x)≤1的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x,x<1
log4x,   x>1
,滿足f(x)=
1
4
的x的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:向量
m
=(sinx,
3
4
),
n
=(cosx,-1)
,設(shè)函數(shù)f(x)=2(
m
+
n
)•
n

(1)求f(x)解析式;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
) (x∈[0,
π
2
])
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案