6.已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為( 。
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

分析 推導出該圓柱底面圓周半徑r=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,由此能求出該圓柱的體積.

解答 解:∵圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,
∴該圓柱底面圓周半徑r=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴該圓柱的體積:V=Sh=$π×(\frac{\sqrt{3}}{2})^{2}×1$=$\frac{3π}{4}$.
故選:B.

點評 本題考查面圓柱的體積的求法,考查圓柱、球等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P-ABCD的體積為$\frac{8}{3}$,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,AB為半圓O的直徑,直線PC切半圓O于點C,AP⊥PC,P為垂足.
求證:(1)∠PAC=∠CAB;
(2)AC2 =AP•AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系xOy中,角α與角β均以Ox為始邊,它們的終邊關于y軸對稱,若sinα=$\frac{1}{3}$,則sinβ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C的兩個頂點分別為A(-2,0),B(2,0),焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點D為x軸上一點,過D作x軸的垂線交橢圓C于不同的兩點M,N,過D作AM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax2+(2a+1)x.
(1)討論f(x)的單調(diào)性;
(2)當a<0時,證明f(x)≤-$\frac{3}{4a}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標x和y的數(shù)據(jù),并制成如圖,其中“*”表示服藥者,“+”表示未服藥者.
(1)從服藥的50名患者中隨機選出一人,求此人指標y的值小于60的概率;
(2)從圖中A,B,C,D四人中隨機選出兩人,記ξ為選出的兩人中指標x的值大于1.7的人數(shù),求ξ的分布列和數(shù)學期望E(ξ);
(3)試判斷這100名患者中服藥者指標y數(shù)據(jù)的方差與未服藥者指標y數(shù)據(jù)的方差的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為( 。
A.90πB.63πC.42πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知矩陣A=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,B=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$.
(1)求AB;
(2)若曲線C1:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}$=1在矩陣AB對應的變換作用下得到另一曲線C2,求C2的方程.

查看答案和解析>>

同步練習冊答案