求拋物線y=x2過點(
5
2
,6)的切線方程.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先設(shè)出切點坐標(biāo),求導(dǎo)數(shù),可得2a=
a2-6
a-
5
2
,即可求出切點坐標(biāo),最后利用兩點確定一直線求出切線方程即可.
解答: 解:設(shè)切點坐標(biāo)是(a,a2),
∵y=x2,∴y′=2x,
∴k=2a=
a2-6
a-
5
2

整理得a2-5a+6=0,
解得a=2或a=3;
當(dāng)a=2時,k=4,此時切線方程是4x-y-4=0;
當(dāng)a=3時,k=6,此時切線方程是6x-y-9=0.
點評:求過點的切線方程一般采取先設(shè)切點坐標(biāo),然后進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校組織的數(shù)學(xué)競賽中,學(xué)生的競賽成績ξ-N(100,σ2),P(ξ>120)=a,P(80<ξ≤100)=b,則直線ax+by+
1
2
=0與圓x2+y2=2的位置關(guān)系是( 。
A、相離B、相交
C、相離或相切D、相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cos2x
3
)
,
n
=(1
,sin2x),函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期;
(2)在△ABC中,a、b、c分別為角A、B、C的對邊,S△ABC為△ABC的面積,且f(C)=3,a=
3
,c=1,求 a>b時的S△ABC值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年2月7日國務(wù)院召開常務(wù)會議決定合并新型農(nóng)村社會養(yǎng)老保險和城鎮(zhèn)居民社會養(yǎng)老保險,建立全國統(tǒng)一的城鄉(xiāng)居民基本養(yǎng)老保險制度,某街道社區(qū)N名居民接受當(dāng)?shù)仉娨暸_就該項制度的采訪,他們的年齡在25隨至50歲之間.按年齡分5組:[25,30),[30,35),[35,40),[40,45),[45,50],得到的頻率分布直方圖如圖所示,如表是年齡的頻數(shù)分布表.
區(qū)間 [25,30) [30,35) [35,40) [40,45) [45,50]
人數(shù)  25  a  b    
(Ⅰ)求正整數(shù)a,b,N的值;
(Ⅱ)現(xiàn)要從年齡較小的前3組中用分層抽樣的方法抽取6人,則年齡在地1,2,3組的人數(shù)分別是多少?
(Ⅲ)在(Ⅱ)條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,用列舉法求恰有1人在第3組的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:方程x2+x+m=0有一個正根和一個負(fù)根;命題Q:方程4x2+4(m-2)x+1=0無實數(shù)根,若P或Q為真,P且Q為假,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=
2
3
cosx-2sinx
5+2cos2x-2
3
sinxcosx
+2的圖象先向右平移
π
6
個單位,再向下平移兩個單位,得到函數(shù)g(x)的圖象.
(1)化簡f(x)的表達(dá)式,并求出函數(shù)g(x)的表示式;
(2)指出函數(shù)g(x)在[-
π
2
π
2
]上的單調(diào)性和最大值;
(3)已知A(-2,
3
2
),B(2,
9
2
),問在y=g(x)的圖象上是否存在一點P,使得
AP
BP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x-
π
3
)+2sin(x+
π
4
)sin(x-
π
4

(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)若函數(shù)f(x)-m=0在區(qū)間[0,
3
]上有兩個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-(2a-1)x+a2-1與x軸的交點為A、B.
(1)求證:點A、B在原點異側(cè)的充要條件為-1<a<1;
(2)根據(jù)題意,提出一個與充分條件、必要條件、充要條件相關(guān)的問題并作出解答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知G是△ABC的重心,直線EF過點G且與邊AB、C分別交于點E、F,
AE
AB
,
AF
AC
,則
1
α
+
1
β
的值為
 

查看答案和解析>>

同步練習(xí)冊答案