【題目】在等比數(shù)列中,已知.設(shè)數(shù)列的前n項和為,且,,.

1)求數(shù)列的通項公式;

2)證明:數(shù)列是等差數(shù)列;

3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.

【答案】12)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè)

【解析】

1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項和公差即可.

1)設(shè)等比數(shù)列的公比為q,因為,,所以,解得.

所以數(shù)列的通項公式為:.

2)由(1)得,當時,可得①,

①得,

則有,即,.

因為,由①得,,所以,

所以.

所以數(shù)列是以為首項,1為公差的等差數(shù)列.

3)由(2)得,所以,.

假設(shè)存在等差數(shù)列,其通項,

使得對任意,都有,

即對任意,都有.

首先證明滿足③的.若不然,,則,或.

i)若,則當,時,,

這與矛盾.

ii)若,則當,時,.

,,所以.

,這與矛盾.所以.

其次證明:當時,.

因為,所以上單調(diào)遞增,

所以,當時,.

所以當時,.

再次證明.

iii)若時,則當,,,,這與③矛盾.

iv)若時,同(i)可得矛盾.所以.

時,因為,

所以對任意,都有.所以,.

綜上,存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求出函數(shù)的單調(diào)區(qū)間及最大值;

2)若,求函數(shù)上的最大值的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面向量,滿足,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為(

A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,

1)求橢圓的標準方程;

2)設(shè)是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為m為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線與曲線C交于MN兩點.

(1)求直線l的普通方程和曲線C的直角坐標方程;

(2)求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線是曲線的切線.

1)求函數(shù)的解析式,

2)若,證明:對于任意有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系, 點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點的直角坐標及曲線的直角坐標方程;

(2)若為曲線上的動點,求的中點到直線 的距離的最小值.

查看答案和解析>>

同步練習冊答案