如圖,在銳角△ABC中,AB<ACAD是邊BC上的高,P是線段AD內(nèi)一點(diǎn)。過PPEAC,垂足為E,做PFAB,垂足為F。O1、O2分別是△BDF、△CDE的外心。求證:O1、O2、E、F四點(diǎn)共圓的充要條件為P是△ABC的垂心。
證明略
證明:連結(jié)BP、CP、O1O2、EO2、EF、FO1。因?yàn)?i>PD⊥BC,PFAB,故B、D、P、F四點(diǎn)共圓,
BP為該圓的直徑。又因?yàn)?i>O1是△BDF的外心,故O1BP上且是BP的中點(diǎn)。同理可證C、DP、E四點(diǎn)共圓,且O2是的CP中點(diǎn)。綜合以上知O1O2BC,所以∠PO2O1=∠PCB。因?yàn)?i>AF·AB=AP·AD=AE·AC,所以B、C、E、F四點(diǎn)共圓。
充分性:設(shè)P是△ABC的垂心,由于PEAC,PFAB,所以BO1、P、E四點(diǎn)共線,C、O2、P、F四點(diǎn)共線,∠FO2O1=∠FCB=∠FEB=∠FEO1,故O1、O2、E、F四點(diǎn)共圓。
必要性:設(shè)O1、O2、E、F四點(diǎn)共圓,故∠O1O2E+∠EFO1=180°。
由于∠PO2O1=∠PCB=∠ACB-∠ACP,又因?yàn)?i>O2是直角△CEP的斜邊中點(diǎn),也就是△CEP的外心,所以∠PO2E=2∠ACP。因?yàn)?i>O1是直角△BFP的斜邊中點(diǎn),也就是△BFP的外心,從而∠PFO1=90°-∠BFO1=90°-∠ABP。因?yàn)?i>B、C、EF四點(diǎn)共圓,所以∠AFE=∠ACB,∠PFE=90°-∠ACB。于是,由∠O1O2E+∠EFO1=180°得
(∠ACB-∠ACP)+2∠ACP+(90°-∠ABP)+(90°-∠ACB)=180°,即∠ABP=∠ACP。又因?yàn)?i>AB<AC,ADBC,故BD<CD。設(shè)B'是點(diǎn)B關(guān)于直線AD的對稱點(diǎn),則B'在線段DC上且B'D=BD。連結(jié)AB'、PB'。由對稱性,有∠AB'P=∠ABP,從而∠AB'P=∠ACP,所以A、P、B'、C四點(diǎn)共圓。由此可知∠PB'B=∠CAP=90°-∠ACB。因?yàn)椤?i>PBC=∠PB'B,
故∠PBC+∠ACB=(90°-∠ACB)+∠ACB=90°,故直線BPAC垂直。由題設(shè)P在邊BC的高上,所以P是△ABC的垂心。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點(diǎn),,求以為直徑的圓的方程,并判斷、、與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方程表示一個圓.
(1)求的取值范圍;
(2)求該圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,PA切于點(diǎn)A,割線
PBC經(jīng)過圓心O,OB="PB=1," OA繞點(diǎn)O逆時針旋轉(zhuǎn)60°到OD,
則PD的長為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知實(shí)數(shù)x、y滿足方程x2+y2-4x+1=0.求
(1)的最大值和最小值;(2)yx的最小值;(3)x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓C經(jīng)過點(diǎn)A(-1,5),B(5,5,),C(6,-2)三點(diǎn).
(1)求圓C的圓心和半徑;
(2)求過點(diǎn)(0,6)且與圓C相切的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓:和圓:交于兩點(diǎn),則的垂直平分線的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是圓O的直徑,切圓O于點(diǎn),切圓O于點(diǎn),交的延長線于點(diǎn),若,,則_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

                   

查看答案和解析>>

同步練習(xí)冊答案