【題目】設(shè)函數(shù),,其中,為正實數(shù).
(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;
(2)設(shè),證明:對任意,都有.
【答案】(1) (2)證明見解析
【解析】
(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時,,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.
(1)解:因為函數(shù)的圖象恒在的圖象的下方,
所以在區(qū)間上恒成立.
設(shè),其中,
所以,其中,.
①當(dāng),即時,,
所以函數(shù)在上單調(diào)遞增,,
故成立,滿足題意.
②當(dāng),即時,設(shè),
則圖象的對稱軸,,,
所以在上存在唯一實根,設(shè)為,則,,,
所以在上單調(diào)遞減,此時,不合題意.
綜上可得,實數(shù)的取值范圍是.
(2)證明:由題意得,
因為當(dāng)時,,,
所以.
令,則,
所以在上單調(diào)遞增,,即,
所以,從而.
由(1)知當(dāng)時,在上恒成立,整理得.
令,則要證,只需證.
因為,所以在上單調(diào)遞增,
所以,即在上恒成立.
綜上可得,對任意,都有成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(其中為自然對數(shù)的底數(shù))
(1)若恒成立,求的最大值;
(2)設(shè),若存在唯一的零點,且對滿足條件的不等式恒成立,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:對于,恒成立;
(3)若存在,使得當(dāng)時,恒有成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,橢圓的離心率為,過橢圓的左焦點,且斜率為的直線,與以右焦點為圓心,半徑為的圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過右焦點的弦,且,求的面積的最大值以及取最大值時實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形, ,M是線段DE上的點,滿足DM=2ME.
(1)證明:BE//平面MAC;
(2)求直線BF與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為(其中為常數(shù)).
(1)若曲線N與曲線M只有一個公共點,求的取值范圍;
(2)當(dāng)時,求曲線M上的點與曲線N上的點之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,試證明:函數(shù)有且僅有兩個零點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com