已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于數(shù)學(xué)公式,它的一個(gè)頂點(diǎn)恰好是拋物線y2=數(shù)學(xué)公式的焦點(diǎn).PQ過橢圓焦點(diǎn)且PQ⊥x軸,A、B是橢圓位于直線PQ兩側(cè)的兩動(dòng)點(diǎn).
(1)求橢圓C的方程;
(2)若直線AB的斜率為1,求四邊形APBQ面積的最大值;
(3)當(dāng)A、B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

解:(1)設(shè)橢圓C的方程為
∵橢圓的一個(gè)頂點(diǎn)恰好是拋物線y2=的焦點(diǎn),∴a=
∵離心率等于,∴,∴c=1
∴b=1
∴橢圓C的方程為
(2)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=x+t,代入橢圓方程,消元可得3x2+4tx+2t2-2=0
由△>0,解得-<t<
由韋達(dá)定理得x1+x2=-t,x1x2=
∵PQ過橢圓焦點(diǎn)且PQ⊥x軸,∴|PQ|=
∴四邊形APBQ的面積S=××|x1-x2|=×
∴t=0時(shí),Smax=
(3)當(dāng)∠APQ=∠BPQ,則PA、PB的斜率之和為0,設(shè)直線PA的斜率為k,則PB的斜率為-k,
PA的直線方程為y-=k(x-1),與橢圓方程聯(lián)立,消元可得(1+2k2)x2+(2k-4k2)x+k2-2k-1=0
∴x1+1=-
同理x2+1=-
∴x1+x2=,x1-x2=-
∴y1-y2=k(x1+x2)-2k=,x1-x2=-

∴直線AB的斜率為定值
分析:(1)根據(jù)離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線y2=的焦點(diǎn),易求出a,b的值,得到橢圓C的方程.
(2)設(shè)出直線AB的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系,求得四邊形APBQ的面積,從而可求四邊形APBQ面積的最大值;
(3)設(shè)直線PA的斜率為k,則PB的斜率為-k,將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系,即可求得得出AB的斜率為定值.
點(diǎn)評:本題考查的知識點(diǎn)是橢圓的標(biāo)準(zhǔn)方程,直線與圓錐曲線的綜合問題,其中根據(jù)已知條件計(jì)算出橢圓的標(biāo)準(zhǔn)方程是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市2012屆高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

點(diǎn),左焦

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

。

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習(xí)冊答案