20.在二項式(1+x)n(n∈N*)的展開式中,存在著系數(shù)之比為5:7的相鄰兩項,則指數(shù)n的最小值為11.

分析 由題意可得:$\frac{{∁}_{n}^{r}}{{∁}_{n}^{r+1}}$=$\frac{5}{7}$,可得:12r+7=5n,可得n為奇數(shù).經(jīng)過驗證:n=1,3,…,即可得出.

解答 解:由題意可得:$\frac{{∁}_{n}^{r}}{{∁}_{n}^{r+1}}$=$\frac{5}{7}$,
可得:12r+7=5n,n為奇數(shù),
經(jīng)過驗證:n=1,3,…,
可得n的最小值為11.
故答案為:11.

點評 本題考查了二項式定理的應(yīng)用、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.小王大學(xué)畢業(yè)后決定利用所學(xué)知識自主創(chuàng)業(yè),在一塊矩形的空地上辦起了養(yǎng)殖場,如圖所示,四邊形ABCD為矩形,AB=200米,AD=200$\sqrt{3}$米,現(xiàn)為了養(yǎng)殖需要,在養(yǎng)殖場內(nèi)要建造蓄水池,小王因地制宜,建造了一個三角形形狀的蓄水池,其中頂點分別為A,E,F(xiàn)(E,F(xiàn)兩點在線段BD上),且∠EAF=$\frac{π}{6}$,設(shè)∠BAE=α.
(1)請將蓄水池的面積f(α)表示為關(guān)于角α的函數(shù)形式,并寫出角α的定義域;
(2)當(dāng)角α為何值時,蓄水池的面積最大?并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-2,1),$\overrightarrow{c}$=(3,2),若向量$\overrightarrow{c}$與向量k$\overrightarrow{a}$+$\overrightarrow$垂直,則實數(shù)k=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,a、b、c分別是三個內(nèi)角A、B、C的對邊,若向量$\overrightarrow x$=$(a,\sqrt{3}b)$與向量$\overrightarrow y=(cosA,sinB)$共線
(1)求角A;
(2)若a=2,求b+c得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于0<a<1,給出下列四個不等式(  )
①loga(1+a)<loga(1+$\frac{1}{a}$)②loga(1+a)>loga(1+$\frac{1}{a}$); ③a1+a<a${\;}^{1+\frac{1}{a}}$;④a1+a>a${\;}^{1+\frac{1}{a}}$
其中成立的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若曲線${C_1}:y=1+\sqrt{-{x^2}+2x}$與曲線C2:(y-1)•(y-kx-2k)=0有四個不同的交點,則實數(shù)k的取值范圍為($\frac{1}{2}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓${C_1}:{x^2}+{y^2}=4$與圓${C_2}:{(x-1)^2}+{(y-3)^2}=4$,過動點P(a,b)分別作圓C1、圓C2的切線PM,PN,( M,N分別為切點),若|PM|=|PN|,則a2+b2-6a-4b+13的最小值是$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.$\sqrt{1-2cos(\frac{π}{2}+3)sin(\frac{π}{2}-3)}$=(  )
A.-sin3-cos3B.sin3-cos3C.sin3+cos3D.cos3-sin3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-ax(a為常數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,求不等式f(x)-f($\frac{2}{a}$-x)>0的解集;
(Ⅲ)若存在兩個不相等的整數(shù)x1,x2滿足f(x1)=f(x2),求證:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

同步練習(xí)冊答案