【題目】某企業(yè)參加項目生產的工人為人,平均每人每年創(chuàng)造利潤萬元.根據現實的需要,從項目中調出人參與項目的售后服務工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調出多少人參加項目從事售后服務工作?
(2)在(1)的條件下,當從項目調出的人數不能超過總人數的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調出的工人所創(chuàng)造的年總利潤,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統(tǒng)計數據如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經分析發(fā)現1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調的銷售量;
(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數 | 60 | 80 | 120 | 130 | 80 | 30 |
現采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數據:線性回歸方程,其中,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若是遞增數列,數列滿足:對任意,存在,使得,則稱是的“分隔數列”.
(1)設,證明:數列是的分隔數列;
(2)設是的前n項和,,判斷數列是否是數列的分隔數列,并說明理由;
(3)設是的前n項和,若數列是的分隔數列,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:,左頂點為,經過點,過點作斜率為的直線交橢圓于點,交軸于點.
(1)求橢圓的方程;
(2)已知為的中點,,證明:對于任意的都有恒成立;
(3)若過點作直線的平行線交橢圓于點,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩動圓和(),把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,且曲線上的相異兩點滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經過一定點,并求此定點的坐標;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統(tǒng)計學中將個數的和記作
(1)設,求;
(2)是否存在互不相等的非負整數,,使得成立,若存在,請寫出推理的過程;若不存在請證明;
(3)設是不同的正實數,,對任意的,都有,判斷是否為一個等比數列,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(1)求拋物線G的方程;
(2)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y﹣1)2=1交于A、C、D、B四點,試證明|AC||BD|為定值;
(3)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數據,,,是上海普通職(,)個人的年收入,設這個數據的中位數為,平均數為,方差為,如果再加上世界首富的年收入,則這個數據中,下列說法正確( )
A.年收入平均數大大增大,中位數一定變大,方差可能不變
B.年收入平均數大大增大,中位數可能不變,方差變大
C.年收入平均數大大增大,中位數可能不變,方差也不變
D.年收入平均數大大增大,中位數可能不變,方差可能不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線過點,且漸近線方程為,直線與曲線交于點、兩點.
(1)求雙曲線的方程;
(2)若直線過原點,點是曲線上任一點,直線,的斜率都存在,記為、,試探究的值是否與點及直線有關,并證明你的結論;
(3)若直線過點,問在軸上是否存在定點,使得為常數?若存在,求出點坐標及此常數的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com