有下列說法:
(1)函數(shù)y=-cos2x的最小正周期是π;
(2)終邊在y軸上的角的集合是{α|α=
2
,k∈Z};
(3)函數(shù)y=4sin(2x-
π
3
)的一個(gè)對(duì)稱中心為(
π
6
,0)
(4)設(shè)△ABC是銳角三角形,則點(diǎn)P(sinA-cosB,cos(A+B))在第四象限
則正確命題的序號(hào)是
 
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用余弦函數(shù)的圖象和性質(zhì),判斷各個(gè)選項(xiàng)是否正確,從個(gè)人得出結(jié)論.
解答: 解:由于函數(shù)y=-cos2x的最小正周期是
2
=π,故(1)正確.
由于終邊在y軸上的角的集合是{α|α=kπ+
π
2
=
(2k+1)π
2
,k∈Z},故(2)不正確.
由于x=
π
6
時(shí)函數(shù)y=4sin(2x-
π
3
)=0,可得函數(shù)y=4sin(2x-
π
3
)的一個(gè)對(duì)稱中心為(
π
6
,0),
故(3)正確.
由于△ABC是銳角三角形,則A+B>
π
2
,即 A>
π
2
-B>0,∴sinA>sin(
π
2
-B)=cosB,
∴sinA-cosB>0,cos(A+B)<0,
故點(diǎn)P(sinA-cosB,cos(A+B))在第四象限,故(4)正確.
故答案為:(1)、(3)、(4).
點(diǎn)評(píng):本題主要考查余弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某次月考從甲、乙兩班中各抽取20個(gè)物理成績,整理數(shù)據(jù)得到莖葉圖如圖所示,根據(jù)莖葉圖解決下列問題.
(1)分別指出甲乙兩班物理樣本成績的中位數(shù);
(2)分別求甲乙兩班物理樣板成績的平均值;
(3)定義成績?cè)?0分以上為優(yōu)秀,現(xiàn)從甲乙兩班物理樣本成績中有放回地各隨機(jī)抽取兩次,每次抽取1個(gè)成績,設(shè)ξ表示抽出的成績中優(yōu)秀的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,每個(gè)側(cè)面均為邊長為2的正方形,D為底邊AB的中點(diǎn),E為側(cè)棱CC1的中點(diǎn).
(Ⅰ)求證:CD∥平面A1EB;
(Ⅱ)求證:AB1⊥平面A1EB;
(Ⅲ)若F為A1B1的中點(diǎn),求過F,D,B,C點(diǎn)的球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z=
3
-i(i是虛數(shù)單位),則z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ~B(n,p),且Eξ=6,Dξ=3,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
12
1
=1,
12+22
1+2
=
5
3
,
12+22+32
1+2+3
=
7
3
12+22+32+42
1+2+3+4
=
9
3
,…,則第n個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系中,極點(diǎn)到直線ρsin(θ+θ0)=a(其中θ0、a為常數(shù))的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽.下列各對(duì)事件中,為對(duì)立事件的是( 。
A、恰有一名男生和恰有2名男生
B、至少一名男生和至少一名女生
C、至少有一名男生和與全是女生
D、至少有一名男生和全是男生

查看答案和解析>>

同步練習(xí)冊(cè)答案