【題目】為奇函數(shù),為實常數(shù).

(1)求的值;

(2)證明:在區(qū)間內(nèi)單調(diào)遞增;

(3)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1);(2)證明見解析;(3).

【解析】試題分析:(1)因為函數(shù)是奇函數(shù),滿足,即 ,求得的值;(2)根據(jù)(1)的結果可知 ,根據(jù)函數(shù)單調(diào)性的定義證明 上是減函數(shù),再利用復合函數(shù)單調(diào)性的判斷原則判斷函數(shù)的單調(diào)性;(3)設,根據(jù)(2)的結果可知是單調(diào)遞增函數(shù),那么將恒成立問題轉(zhuǎn)化為 ,可求的取值范圍.

試題解析:(1)∵函數(shù)是奇函數(shù),

,

,

,

,

,

,

經(jīng)檢驗,.

(2)由(1)可知,

,由函數(shù)單調(diào)性的定義可證明上為減函數(shù),

上為增函數(shù).

(3)設,

則函數(shù)上為增函數(shù),

恒成立,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某車間的一臺機床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為 ,…, ,測量其長度(單位: ),得到如表中數(shù)據(jù):

其中長度在區(qū)間內(nèi)的零件為一等品.

(1)從上述8個零件中,隨機抽取一個,求這個零件為一等品的概率;

(2)從一等品零件中,隨機抽取3個.

①用零件的編號列出所有可能的抽取結果;

②求這3個零件長度相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0
(1)求m的取值范圍;
(2)圓C與直線x+2y﹣4=0相交于M,N兩點,且OM⊥ON(O為坐標原點),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調(diào)查了40個用戶,得到用戶的滿意度評分如下:

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分數(shù)據(jù)為92.

(1)請你列出抽到的10個樣本的評分數(shù)據(jù);

(2)計算所抽到的10個樣本的均值和方差;

(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”.試應用樣本估計總體的思想,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?(精確到)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F(xiàn)為CE的中點.

(1)求直線AF與平面ACD所成的角;
(2)求證:平面BCE⊥平面DCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的平分線所在直線的方程為y=0.

(1)求點A的坐標;
(2)若點B的坐標為(1,2),求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知動圓S過定點P(﹣2 ),且與定圓Q:(x﹣2 2+y2=36相切,記動圓圓心S的軌跡為曲線C.
(1)求曲線C的方程;
(2)設曲線C與x軸,y軸的正半軸分別相交于A,B兩點,點M,N為橢圓C上相異的兩點,其中點M在第一象限,且直線AM與直線BN的斜率互為相反數(shù),試判斷直線MN的斜率是否為定值.如果是定值,求出這個值;如果不是定值,說明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)證明:若f(x)存在零點,則f(x)在區(qū)間(1, ]上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

①過點(-1,2)的直線方程一定可以表示為y-2=k(x+1)的形式(k∈R);

②過點(-1,2)且在x軸、y軸截距相等的直線方程是xy-1=0;

③過點M(-1,2)且與直線lAxByC=0(AB≠0)垂直的直線方程是B(x+1)+A(y-2)=0;

④設點M(-1,2)不在直線lAxByC=0(AB≠0)上,則過點M且與l平行的直線方程是A(x+1)+B(y-2)=0;

⑤點P(-1,2)到直線axya2a=0的距離不小于2.

以上命題中,正確的序號是________

查看答案和解析>>

同步練習冊答案