已知的圖像與y軸交于點(diǎn)(0,2),
并且在x=1處切線的方向向量為。
(1)若是函數(shù)的極值點(diǎn),求的解析式;
(2)若函數(shù)在區(qū)間[]單調(diào)遞增,求實(shí)數(shù)b的取值范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:013
設(shè)k>1,f(x)=k(x-1)(xÎR)。在平面直角坐標(biāo)第xOy中,函數(shù)y=f(x)的圖像與x軸交于A點(diǎn),它的反函數(shù)y=f-1(x)的圖像與y軸交于B點(diǎn),并且這兩個(gè)函數(shù)的圖像交于P點(diǎn),已知四邊形OAPB的面積是3,則k等于(。
A.3 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013
A.3 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年遼寧省普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
本小題滿分12分)
已知函數(shù)f(x)=lnx-ax2+(2-a)x.
(I)討論f(x)的單調(diào)性;
(II)設(shè)a>0,證明:當(dāng)0<x<時(shí),f(+x)>f(-x);
(III)若函數(shù)y=f(x)的圖像與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明:f’( x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知二次函數(shù)f(x)滿足f(x-3)=f(-x-3),且該函數(shù)的圖像與y軸交于點(diǎn)(0,-1),在x軸上截得的線段長為。
確定該二次函數(shù)的解析式;
當(dāng)x∈[-6,-1]時(shí),求f(x)值域。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com