【題目】某人堅(jiān)持跑步鍛煉,根據(jù)他最近20周的跑步數(shù)據(jù),制成如下條形圖:

根據(jù)條形圖判斷,下列結(jié)論正確的是(

A.周跑步里程逐漸增加

B.20周跑步里程平均數(shù)大于30km

C.20周跑步里程中位數(shù)大于30km

D.10周的周跑步里程的極差大于后10周的周跑步里程的極差

【答案】D

【解析】

由統(tǒng)計(jì)圖表可知,周跑步里程的變化情況,也可判斷平均和中位數(shù),極差從而可選出答案.

解:從統(tǒng)計(jì)圖表看,周跑步里程并不是逐漸增加,所以A不正確;

從表中看,20周中,周跑步里程大于30km的有6周,所以平均數(shù)和中位數(shù)都不可能大于30km,所以B,C不正確;

由統(tǒng)計(jì)圖表中的數(shù)據(jù)可得,前前10周的周跑步里程的極差為10km,后10周的周跑步里程的極差小10km,所以D正確

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,AB//CD是以為斜邊的等腰直角三角形,且平面平面ABCD,點(diǎn)F滿足,.

1)試探究為何值時(shí),CE//平面BDF,并給予證明;

2)在(1)的條件下,求直線AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,且,.

(1)證明:平面平面;

(2)有一動(dòng)點(diǎn)在底面的四條邊上移動(dòng),求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點(diǎn),距離之比為常數(shù)的點(diǎn)的軌跡是一個(gè)圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點(diǎn)在棱上,,動(dòng)點(diǎn)滿足.若點(diǎn)在平面內(nèi)運(yùn)動(dòng),則點(diǎn)所形成的阿氏圓的半徑為________;若點(diǎn)在長方體內(nèi)部運(yùn)動(dòng),為棱的中點(diǎn),的中點(diǎn),則三棱錐的體積的最小值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足,,記數(shù)列的前n項(xiàng)和是,則(

A.若數(shù)列是常數(shù)列,則

B.,則數(shù)列單調(diào)遞減

C.,則

D.,任取中的9項(xiàng)構(gòu)成數(shù)列的子數(shù)列,則不全是單調(diào)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐朝的狩獵景象浮雕銀杯如圖1所示.其浮雕臨摹了國畫、漆繪和墓室壁畫,體現(xiàn)了古人的智慧與工藝.它的盛酒部分可以近似地看作是半球與圓柱的組合體(假設(shè)內(nèi)壁表面光滑,忽略杯壁厚度),如圖2所示.已知球的半徑為R,酒杯內(nèi)壁表面積為,設(shè)酒杯上部分(圓柱)的體積為,下部分(半球)的體積為,則

A.2B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(

A.若直線 與直線垂直,則;

B.,,則;

C.和圓公共弦長為

D.線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成(平面).若分別為線段的中點(diǎn),則在翻轉(zhuǎn)過程中,下列說法正確的是( )

A.與平面垂直的直線必與直線垂直

B.異面直線所成的角是定值

C.一定存在某個(gè)位置,使

D.三棱錐外接球半徑與棱的長之比為定值

查看答案和解析>>

同步練習(xí)冊答案