9.復(fù)平面內(nèi)表示復(fù)數(shù)z=i(-2+i)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:z=i(-2+i)=-2i-1對應(yīng)的點(-1,-2)位于第三象限.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{3x}{ax+b}$,f(1)=1,f($\frac{1}{2}$)=$\frac{3}{4}$,數(shù)列{xn}滿足x1=$\frac{3}{2}$,xn+1=f(xn),n∈N*
(Ⅰ)求x2,x3
(Ⅱ)求數(shù)列{xn}的通項公式.
(Ⅲ)求證:$\sum_{k=1}^{n}\frac{{x}_{k}}{{3}^{k}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.曲線y=x2+$\frac{1}{x}$在點(1,2)處的切線方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=3x-($\frac{1}{3}$)x,則f(x)( 。
A.是偶函數(shù),且在R上是增函數(shù)B.是奇函數(shù),且在R上是增函數(shù)
C.是偶函數(shù),且在R上是減函數(shù)D.是奇函數(shù),且在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{9}=1$(a>0)的一條漸近線方程為y=$\frac{3}{5}$x,則a=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如果一扇形的弧長變?yōu)樵瓉淼?\frac{3}{2}$倍,半徑變?yōu)樵瓉淼囊话,則該扇形的面積為原扇形面積的$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知復(fù)數(shù)z滿足z(1+i)=2i,則z的共軛復(fù)數(shù)$\overline{z}$等于(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosθ}\\{y=sinθ}\end{array}\right.$,(θ為參數(shù)),直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=a+4t}\\{y=1-t}\end{array}\right.$,(t為參數(shù)).
(1)若a=-1,求C與l的交點坐標;
(2)若C上的點到l距離的最大值為$\sqrt{17}$,求a.

查看答案和解析>>

同步練習冊答案