((本小題12分)
已知橢圓的一個頂點為(-2,0),焦點在x軸上,且離心率為.
(1)求橢圓的標準方程.
(2)斜率為1的直線與橢圓交于A、B兩點,O為原點,
當△AOB的面積最大時,求直線的方程.
解:(1)設橢圓方程為,由題意得
所以所求橢圓的標準方程為 
(2)將直線l:y=x+b代入橢圓中有

由韋達定理得 
  
又點O到直線l的距離 

∴當(滿足)時,有最大值。此時
∴所求的直線方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
已知橢圓的中心在坐標原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線且與橢圓相交于A,B兩點,當P是AB的中點時,
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓o:與橢圓有一個公共點A(0,1),F(xiàn)為橢圓的左焦點,直線AF被圓所截得的弦長為1.
(1)求橢圓方程。
(2)圓o與x軸的兩個交點為C、D,B是橢圓上異于點A的一個動點,在線段CD上是否存在點T,使,若存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
已知橢圓與雙曲線有共同的焦點F1、F2,設它們在第一象限的交點為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求與橢圓有共同焦點,且過點的雙曲線方程,并且求出這條雙曲線的實軸長、焦距、離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線過橢圓左焦點F1和一個頂點B,則該橢圓的離心率為                                                 (    )
A.            B.             C.          D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在橢圓內(nèi),則的取值范圍為             (    )
            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F(c, 0)是橢圓的右焦點,F與橢圓上點的距離的最大值為M,最小值為m,則橢圓上與F點的距離等于的點的坐標是                             (   )
A.(c, ±)B.(-c, ±)C.(0, ±b)D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設點P是橢圓上的一動點,F(xiàn)是橢圓的左焦點,
的取值范圍為          

查看答案和解析>>

同步練習冊答案