15.在(1+x)+(1+x) 2+(1+x) 3+…+(1+x) 9的展開式中,x2的系數(shù)等于(  )
A.121B.120C.84D.45

分析 在1+(1+x)+(1+x)2+…+(1+x)9的展開式中,x2項的系數(shù)是C22+C32+…+C92=C103,即可得出結(jié)論.

解答 解:在1+(1+x)+(1+x)2+…+(1+x)9的展開式中,x2項的系數(shù)是C22+C32+…+C92=C103=120.
故選:B.

點評 本題考查二項式系數(shù)的性質(zhì),考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.如果一個幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.80-$\frac{20}{3}$πB.80+$\frac{20}{3}$πC.112+(2$\sqrt{29}$-4)πD.112+2$\sqrt{29}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]至少有一個實根x0∈(x1,x2);
(3)設(shè)F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切線斜率為2
(1)求a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)-2x+2,求g(x)在其定義域上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若a+i與3-bi互為共扼復(fù)數(shù),則(a-bi)2=(  )
A.10+6iB.8+6iC.8-6iD.10-6i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos4x-sin4x.下列結(jié)論正確的是( 。
A.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是減函數(shù)B.函數(shù)f(x)的圖象關(guān)于原點對稱
C.f(x)的最小正周期為$\frac{π}{2}$D.f(x)的值域為[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知sin(α-2β)=-$\frac{2}{3}$,cos(2α-β)=$\frac{1}{4}$,其中0<α<$\frac{π}{4}$,$\frac{π}{2}$<β<$\frac{3π}{4}$,則cos(α+β)=$\frac{2\sqrt{15}-\sqrt{5}}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知α,β均為銳角,且cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,則sinβ的值為(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2\sqrt{5}}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,長方體ABCD-A1B1C1D1中,AB=2,BC=CC1=1,點P是CD上的一點,PC=λPD.
(Ⅰ)若A1C⊥平面PBC1,求λ的值;
(Ⅱ)設(shè)λ1=1,λ2=3所對應(yīng)的點P為P1,P2,二面角P1-BC1-P2的大小為θ,求cosθ的值.

查看答案和解析>>

同步練習冊答案