已知函數(shù)f(x)=(其中a為常數(shù),x≠a).利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:
對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過程就停止.
(Ⅰ)當(dāng)a=1且x1=-1時(shí),求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列,求a的取值范圍;
(Ⅲ)是否存在實(shí)數(shù)a,使得取定義域中的任一實(shí)數(shù)值作為x1,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn}?若存在,求出a的值;若不存在,請(qǐng)說明理由.
【答案】分析:(Ⅰ)當(dāng)a=1時(shí),,所以,.兩邊取倒數(shù),得,由等差數(shù)列定義求解.
(Ⅱ)構(gòu)造出一個(gè)常數(shù)列,即:當(dāng)x≠a時(shí),方程f(x)=x有解,即方程x2+(1-a)x+1-a=0有不等于a的解.由△=(1-a)2-4(1-a)≥0求解.
(Ⅲ)用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},即:=a在R中無(wú)解.即當(dāng)x≠a時(shí),方程(1+a)x=a2+a-1無(wú)實(shí)數(shù)解.則有求解,有解則存在,無(wú)解則不存在.
解答:解:(Ⅰ)當(dāng)a=1時(shí),f(x)=,
所以,xn+1=
兩邊取倒數(shù),得-1,
=-1.又=-1,
所以數(shù)列{}是首項(xiàng)為-1,公差d=-1的等差數(shù)列.(3分)
=-1+(n-1)•(-1)=-n,
所以xn=-,
即數(shù)列{xn}的通項(xiàng)公式為xn=-,n∈N*.(4分)
(Ⅱ)根據(jù)題意,只需當(dāng)x≠a時(shí),方程f(x)=x有解,(5分)
即方程x2+(1-a)x+1-a=0有不等于a的解.
將x=a代入方程左邊,左邊為1,與右邊不相等.
故方程不可能有解x=a.(7分)
由△=(1-a)2-4(1-a)≥0,得a≤-3或a≥1.
即實(shí)數(shù)a的取值范圍是(-∞,-3]∪[1,+∞).(10分)
(Ⅲ)假設(shè)存在實(shí)數(shù)a,使得取定義域中的任一實(shí)數(shù)值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},那么根據(jù)題意可知,=a在R中無(wú)解,(12分)
即當(dāng)x≠a時(shí),方程(1+a)x=a2+a-1無(wú)實(shí)數(shù)解.
由于x=a不是方程(1+a)x=a2+a-1的解,
所以對(duì)于任意x∈R,方程(1+a)x=a2+a-1無(wú)實(shí)數(shù)解,
因此解得a=-1.
故a=-1即為所求a的值.(14分)
點(diǎn)評(píng):本題主要考查函數(shù)與數(shù)列的綜合運(yùn)用,主要涉及了等差數(shù)列的定義,通項(xiàng)數(shù)列的存在性與方程有無(wú)根的關(guān)系.屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案