分析:(1)求出f′(x),利用導數(shù)判斷f′(x)的單調(diào)性,由單調(diào)性即可求得其最小值;
(2)不妨設x
1≤x
2,構造函數(shù)K(x)=f(λ
1x+λ
2x
2)-λ
1f(x)-λ
2f(x
2)(x∈[0,x
2]),只需證明K(x)≤0,由(1)可判斷K′(x)≥0,從而知函數(shù)K(x)在[0,x
2]上單調(diào)遞增,故而K(x)≤K(x
2),得證;
(3)先證對任意的x
1,x
2,x
3∈[0,+∞)和實數(shù)λ
1≥0,λ
2≥0,λ
3≥0,且λ
1+λ
2+λ
3=1,總有f(λ
1x
1+λ
2x
2+λ
3x
3)≤λ
1f(x
1)+λ
2f(x
2)+λ
3f(x
3),運用(2)的結論容易證明,再令
λ1=λ2=λ3=,即可求得其最小值.
解答:(1)解:f′(x)=e
x-x,f''(x)=e
x-1
當x∈(-∞,0)時,f''(x)=e
x-1<0,即f′(x)在區(qū)間(-∞,0)上為減函數(shù);
當x∈[0,+∞)時,f''(x)=e
x-1≥0,即f′(x)在區(qū)間[0,+∞)上為增函數(shù);
于是f′(x)的最小值為f′(0)=1.
(2)證明:不妨設x
1≤x
2,構造函數(shù)K(x)=f(λ
1x+λ
2x
2)-λ
1f(x)-λ
2f(x
2)(x∈[0,x
2]),
則有K(x
2)=f(λ
1x
2+λ
2x
2)-λ
1f(x
2)-λ
2f(x
2)=0,
則
K′(x)=λ1f′(λ1x+λ2x2)-λ1f′(x)=λ1(f′(λ1x+λ2x2)-f′(x)),
而λ
1x+λ
2x
2-x=(λ
1-1)x+λ
2x
2=λ
2(x
2-x)≥0,所以λ
1x+λ
2x
2≥x,
由(1)知f′(x)在區(qū)間[0,+∞)上為增函數(shù),
所以
f′(λ1x+λ2x2)-f′(x)≥0,即K′(x)≥0,
所以K(x)在[0,x
2]上單調(diào)遞增,
所以K(x)≤K(x
2)=0,即f(λ
1x
1+λ
2x
2)≤λ
1f(x
1)+λ
2f(x
2).
(3)解:先證對任意的x
1,x
2,x
3∈[0,+∞)和實數(shù)λ
1≥0,λ
2≥0,λ
3≥0,且λ
1+λ
2+λ
3=1,
總有f(λ
1x
1+λ
2x
2+λ
3x
3)≤λ
1f(x
1)+λ
2f(x
2)+λ
3f(x
3),
f(λ1x1+λ2x2+λ3x3)=f((λ1+)(x1+x2)+λ3x3)≤(λ1+λ2)f(x1+x2)+λ3f(x3)≤(λ1+λ2)•(f(x1)+f(x2))+λ3f(x3)=λ
1f(x
1)+λ
2f(x
2)+λ
3f(x
3),
令
λ1=λ2=λ3=,有
f()≤(f(x1)+f(x2)+f(x3)),
當x
1≥0,x
2≥0,x
3≥0且x
1+x
2+x
3=3時,有
f(x1)+f(x2)+f(x3)≥3f()=3f(1)=3e-.
所以f(x
1)+f(x
2)+f(x
3)的最小值為3e-
.
點評:本題考查利用導數(shù)研究函數(shù)的單調(diào)性、求函數(shù)的最值,考查學生綜合運用知識分析問題解決問題的能力,考查學生對問題的轉化能力,本題綜合性強,難度大,能力要求高.