過點P(3,6)且被圓x2+y2=25截得的弦長為8的直線方程為    
【答案】分析:由圓的方程,可知圓心(0,0),r=5,圓心到弦的距離,下面求圓心到直線的距離,分兩種情況,一是若直線斜率不存在,則垂直x軸x=3,成立;若斜率存在,由圓心到直線距離求解.
解答:解:圓心(0,0),r=5
圓心到弦的距離
若直線斜率不存在,則垂直x軸
x=3,圓心到直線距離=|0-3|=3,成立
若斜率存在
y-6=k(x-3)即:kx-y-3k+6=0
則圓心到直線距離
解得
綜上:x-3=0和3x-4y+15=0
故答案為:x-3=0和3x-4y+15=0
點評:本題主要考查直線與圓的位置關(guān)系,主要涉及了圓心距,弦半距及半徑構(gòu)成的直角三角形,直線的方程形式及其性質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過點P(3,6)且被圓x2+y2=25截得的弦長為8的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓心為C的圓經(jīng)過三個點O(0,0)、A(1,3)、B(4,0)
(1)求圓C的方程;
(2)求過點P(3,6)且被圓C截得弦長為4的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市通州區(qū)平潮高中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知圓心為C的圓經(jīng)過三個點O(0,0)、A(1,3)、B(4,0)
(1)求圓C的方程;
(2)求過點P(3,6)且被圓C截得弦長為4的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市通州區(qū)平潮高中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知圓心為C的圓經(jīng)過三個點O(0,0)、A(1,3)、B(4,0)
(1)求圓C的方程;
(2)求過點P(3,6)且被圓C截得弦長為4的直線的方程.

查看答案和解析>>

同步練習冊答案