如圖在長(zhǎng)方體中,,,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn).

(1)求長(zhǎng)方體的體積;
(2)若,,求異面直線所成的角.

(1) ;(2)

解析試題分析:(1)長(zhǎng)方體的體積等于從同一頂點(diǎn)出發(fā)的三條棱長(zhǎng)的乘積,這里只有兩條棱長(zhǎng),另外一條線段是對(duì)角線,可根據(jù)對(duì)角線的計(jì)算公式是三條棱長(zhǎng),是對(duì)角線長(zhǎng))求得第三條棱長(zhǎng);(2)求異面直線所成的角,必須通過(guò)作平行線作出它們所成的角,而一般情況下,都是過(guò)其中一條直線上的一點(diǎn)作另一條的平行線,本題中只要取中點(diǎn),聯(lián)接,可證,從而(或其補(bǔ)角)就是所示異面直線所成的角,在可解得.
試題解析:(1) 連、是直角三角形,.    1分
是長(zhǎng)方體,,又,
平面
又在中,,,,     4分
   6分

(2)取的中點(diǎn),連、
,四邊形為平行四邊形,,等于異面直線所成的角或其補(bǔ)角.    8分
,得,,  10分
,
異面直線所成的角等于      12分
考點(diǎn):(1)長(zhǎng)方體的體積;(2)異面直線所成的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐PABCD的底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,已知PBPD=2,PA.
 
(1)證明:PCBD
(2)若EPA的中點(diǎn),求三棱錐PBCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是圓柱體的一條母線,過(guò)底面圓的圓心,是圓上不與點(diǎn)、重合的任意一點(diǎn),已知棱,

(1)求證:;
(2)將四面體繞母線轉(zhuǎn)動(dòng)一周,求的三邊在旋轉(zhuǎn)過(guò)程中所圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平面,四邊形是矩形,,,點(diǎn),分別是,的中點(diǎn).

(Ⅰ)求三棱錐的體積;
(Ⅱ)求證:平面
(Ⅲ)若點(diǎn)為線段中點(diǎn),求證:∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面是邊長(zhǎng)為1的正方形,平面, ,的中點(diǎn),在棱上.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正方體的棱長(zhǎng)為.

(1)求異面直線所成角的大小;
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為正三角形,且側(cè)面AA1C1C是邊長(zhǎng)為2的正方形,E是的中點(diǎn),F在棱CC1上。

(1)當(dāng)CF時(shí),求多面體ABCFA1的體積;
(2)當(dāng)點(diǎn)F使得A1F+BF最小時(shí),判斷直線AE與A1F是否垂直,并證明的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn)

(Ⅰ)證明:BC1//平面A1CD;
(Ⅱ)設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點(diǎn),F(xiàn)是AB中點(diǎn),AC = 1,BC = 2,AA1 = 4.

(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案