【題目】若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為 ,則下列命題是真命題的是(
A.p∧q
B.(p)∧q
C.p∧(q)
D.q

【答案】B
【解析】解:從有2件正品和2件次品的產(chǎn)品中任選2件得都是正品的概率為 = ,即p是假命題; 如圖正方形的邊長(zhǎng)為4:
圖中白色區(qū)域是以AB為直徑的半圓
當(dāng)P落在半圓內(nèi)時(shí),∠APB>90°;
當(dāng)P落在半圓上時(shí),∠APB=90°;
當(dāng)P落在半圓外時(shí),∠APB<90°;
故使∠AMB>90°的概率P=
即q為真命題,
∴(p)∧q為真命題,
故選:B.

分別求出相應(yīng)的概率,確定p,q的真假,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex(Ⅰ)若函數(shù)f(x)在區(qū)間(0,9]為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a≠0時(shí),過(guò)原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+3|﹣m,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,使得 成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ= (p∈R),曲線C1 , C2相交于A,B兩點(diǎn). (Ⅰ)把曲線C1 , C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(Ⅱ)求弦AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a1=3且(a3﹣1)是(a2﹣1)與a4的等比中項(xiàng).
(1)求an;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn , bn= ,Tn=﹣b1+b2+b3+…+(﹣1)nbn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若集合A={x|2 >1},集合B={x|y=lg },則A∩B=(
A.{x|﹣5<x<1}
B.{x|﹣2<x<1}
C.{x|﹣2<x<﹣1}
D.{x|﹣5<x<﹣1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)都是正數(shù),它的前n項(xiàng)和為Sn , 滿(mǎn)足2Sn=an2+an , 記bn=(﹣1)n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前2016項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)閧0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f1(x),且f1(x)與f(x)不完全相同,則f(x)與f1(x)圖象的公共點(diǎn)必在直線y=x上;
其中真命題的序號(hào)是 . (寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案