AB是圓O的直徑,且|AB|=2a,M是圓上一動點,作MN⊥AB,垂足為N,在OM上取點P,使|OP|=|MN|,求點P的軌跡.

答案:
解析:

解:以圓心O為原點,AB所在的直線為x軸建立直角坐標系(如下圖).則⊙O的方程為.設點P坐標為(x,y),并設圓與y軸交于C,D兩點.作PQ⊥AB于Q,則有.∵|OP|=|MN|,∴=|OM|·|PQ|,即=a|y|.就是,軌跡是分別以CO,OD為直徑的兩個圓.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一簡單幾何體的一個面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC,
(1)證明:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,試求該幾何體的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,多面體ABCDE的一個面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形BCDE為平行四邊形,且CD⊥平面ABC.
(1)證明:BC⊥平面ACD;
(2)若AB=5,BC=4,tan∠EAB=
45
,求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖△ABC內(nèi)接于圓O,G,H分別是AE,BC的中點,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.證明:
(1)GH∥平面ACD;
(2)平面ACD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且 tan∠EAB=
3
2

(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點M,使得MO∥平面ADE,證明你的結論.

查看答案和解析>>

同步練習冊答案