已知曲線C:y=x3
(1)求曲線C上橫坐標(biāo)為1的點處的切線的方程;
(2)第(1)小題中的切線與曲線C是否還有其他的公共點?
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=1處的導(dǎo)數(shù),從而得到切線的斜率,再利用點斜式方程寫出切線方程即可.
(2)由(1)得出的切線方程與函數(shù)y=x3組成方程組,解得兩組解,從而得出切線與曲線C還有其他的公共點.
解答:解:(1)y'=3x2
y'|x=1=3,
而切點的坐標(biāo)為(1,1)
∴曲線y=x3在x=1的處的切線方程為3x-y-2=0
(2)由方程組:
3x-y-2=0
y=x3
解得:
x=1
y=1
x=-2
y=-8

故切線與曲線C還有其他的公共點:(-2,-8).
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,考查運算求解能力和方程思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3及其上一點P1(1,1),過P1作C的切線l1,l1與C的另一公共點為P2(不同于P1),過P2作C的切線l2,l2與C的另一公共點為P3(不同于P2),…,得到C的一列切線l1,l2,…,ln,…,相應(yīng)的切點分別為P1,P2,…,Pn,….
(1)求Pn的坐標(biāo);
(2)設(shè)ln到ln+1的角為θn,求
limn→∞
tanθn
之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2+2x
(1)求曲線C上斜率最小的切線方程.
(2)過原點引曲線C的切線,求切線方程及其對應(yīng)的切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知曲線C:y=x3-x+2和點A(1,2),求過點A的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2,直線l:y=-2x
(1)求曲線C與直線l圍成的區(qū)域的面積;
(2)求曲線y=x3-3x2(0≤x≤1)與直線l圍成的圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積.

查看答案和解析>>

同步練習(xí)冊答案