5.直線$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t為參數(shù))上與點(diǎn)A(-2,3)的距離等于$\sqrt{2}$的點(diǎn)的坐標(biāo)是( 。
A.(-4,5)B.(-3,4)C.(-3,4)或 (-1,2)D.(-4,5)或(0,1)

分析 由題意可得:$\sqrt{(-\sqrt{2}t)^{2}+(\sqrt{2}t)^{2}}$=$\sqrt{2}$,解得t即可得出.

解答 解:由題意可得:$\sqrt{(-\sqrt{2}t)^{2}+(\sqrt{2}t)^{2}}$=$\sqrt{2}$,化為:t2=$\frac{1}{2}$,解得t=$±\frac{\sqrt{2}}{2}$.
當(dāng)t=$\frac{\sqrt{2}}{2}$時(shí),x=-2-$\sqrt{2}×\frac{\sqrt{2}}{2}$=-3,y=3+$\sqrt{2}×\frac{\sqrt{2}}{2}$=4,可得點(diǎn)(-3,4);
當(dāng)t=-$\frac{\sqrt{2}}{2}$時(shí),x=-2+$\sqrt{2}×\frac{\sqrt{2}}{2}$=-1,y=31$\sqrt{2}×\frac{\sqrt{2}}{2}$=2,可得點(diǎn)(-1,2).
綜上可得:滿足條件的點(diǎn)的坐標(biāo)為:(-3,4);或(-1,2).
故選:C.

點(diǎn)評(píng) 本題考查了參數(shù)方程的應(yīng)用、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=x-sinx,則( 。
A.是增函數(shù)
B.是減函數(shù)
C.在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減
D.在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,△ABC的角平分線AD交外接圓于D,BE為圓的切線,求證:D到BC,BE的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知m>0,函數(shù)f(x)=$\frac{1}{2}{x^2}$-mlnx,g(x)=x2-(m+1)x+1.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)命題p:f(x)在區(qū)間[3,+∞)上為增函數(shù);命題q:關(guān)于x的方程g(x)=0有實(shí)根.若(?p)∧q是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,過(guò)圓外一點(diǎn)P作圓的兩條切線PA、PB,A,B為切點(diǎn),再過(guò)P點(diǎn)作圓的一條割線分別與圓交于點(diǎn)C、D,過(guò)AB上任一點(diǎn)Q作PA的平行線分別與直線AC、AD交于點(diǎn)E,F(xiàn),證明:QE=QF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓F1:(x+2)2+y2=32,點(diǎn)F2(2,0),點(diǎn)Q在圓F1上運(yùn)動(dòng),QF2的垂直平分線交QF1于點(diǎn)P.
( I)求證:|PF1|+|PF2|為定值及動(dòng)點(diǎn)P的軌跡M的方程;
( II)不在x軸上的A點(diǎn)為M上任意一點(diǎn),B與A關(guān)于原點(diǎn)O對(duì)稱,直線BF2交橢圓于另外一點(diǎn)D.求證:直線DA與直線DB的斜率的乘積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=(x2-k)ex(e為自然對(duì)數(shù)的底數(shù),e=2.71828,k∈R).
(1)當(dāng)k=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意x∈[1,2],都有f(x)<2x成立,求k的取值范圍;
(3)求函數(shù)y=f(x)在x∈[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}}$(α為參數(shù)),過(guò)點(diǎn)P(1,0)的直線l交曲線C于A,B兩點(diǎn).
(1)將曲線C的參數(shù)方程化為普通方程;
(2)求|PA|•|PB|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知三棱錐A-BCD中,AB、AC、AD兩兩垂直且長(zhǎng)度均為10,定長(zhǎng)為m(m<6)的線段MN的一個(gè)端點(diǎn)M在棱AB上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在△ACD內(nèi)運(yùn)動(dòng)(含邊界),線段MN的中點(diǎn)P的軌跡的面積為2π,則m的值等于4$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案