分析:(1)點(diǎn)(a
n,a
n+1)代入直線方程可得a
n+1=a
n+2,則數(shù)列為等差數(shù)列,根據(jù)首項(xiàng)為2,公比為2寫出通項(xiàng)公式即可;
(2)根據(jù)首項(xiàng)和公比寫出等差數(shù)列的前n項(xiàng)和的公式s
n,并表示出
=
=
-
,,利用拆項(xiàng)法把
變?yōu)?span id="siok6cq" class="MathJye">
-
,然后列舉出各項(xiàng),抵消可得證.
解答:解:(1)點(diǎn)(a
n,a
n+1)在函數(shù)y=x+2的圖象上,∴a
n+1=a
n+2,
∴數(shù)列{a
n}是以首項(xiàng)為2公差為2的等差數(shù)列,
∴a
n=2+2(n-1)=2n;
(2)s
n=
=n(n+1),
則
=
=
-
,
∴
+++…+=(1-
)+(
-
)+…+(
-
)=1-
<1
點(diǎn)評(píng):此題以一次函數(shù)為平臺(tái),考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和,是一道中檔題.學(xué)生證明時(shí)應(yīng)注意運(yùn)用拆項(xiàng)法進(jìn)行化簡(jiǎn).