如圖,在三棱錐中,
(1)求證:平面⊥平面
(2)求直線PA與平面PBC所成角的正弦值;
(3)若動點M在底面三角形ABC上,二面角M-PA-C的余弦值為,求BM的最小值.
(1)見解析 (2). (3).
【解析】(1)本題解決的關(guān)鍵是取線段AC中點O,利用等腰三角形和直角三角形的性質(zhì)得OP⊥OC,OP⊥OB.由線面垂直的判定定理得OP⊥平面ABC,再由面面垂直的判定定理得平面⊥平面 .
(2)由(1)得OB、OC、OP兩兩垂直,可以O(shè)為坐標原點建立空間直角坐標系,然后利用
空間向量法求出平面PBC的法向量,再根據(jù)直線與平面所成角的向量法求解即可.
(3)在(2)的基礎(chǔ)上可知平面PAC的法向量,然后再求出平面PAM的法向量, 則根據(jù)這兩個法向量夾角的余弦值為為,求出直線AM的方程,然后利用點到直線的距離公式可求出B點到AM的最小值.
(1)取AC中點O,因為AP=BP,所以O(shè)P⊥OC 由已知易得三角形ABC為直角三角形,∴OA=OB=OC,⊿POA≌⊿POB≌⊿POC,∴OP⊥OB
∴OP⊥平面ABC, ∵OP在平面PAC中,∴平面⊥平面 4分
(2) 以O(shè)為坐標原點,OB、OC、OP分別為x、y、z軸建立如圖所示空間直角坐標系.
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0, ), 5分
∴設(shè)平面PBC的法向量,
由得方程組
,取 6分
∴
∴直線PA與平面PBC所成角的正弦值為. 8分
(3)由題意平面PAC的法向量, 設(shè)平面PAM的法向量為 ∵又因為
∴ 取
∴ ∴ 11分
∴B點到AM的最小值為垂直距離.
科目:高中數(shù)學(xué) 來源:2013屆廣西玉林市高二下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,,為中點.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值. (本題12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題
如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面∥,且分別交于,交的延長線于.
(Ⅰ)求證:平面;
(Ⅱ)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題
如圖:在三棱錐中,已知點、、分別為棱、、的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)若,,求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省2013屆高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
如圖,在三棱錐中,,為中點。(1)求證:平面
(2)在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點位置;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com