精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
16
+
y2
4
=1的左、右頂點分別為A、B,曲線E是以橢圓中心為頂點,B為焦點的拋物線.
(Ⅰ)求曲線E的方程;
(Ⅱ)直線l:y=
k
(x-2)與曲線E交于不同的兩點M、N,當
AM
AN
≥68時,求直線l的傾斜角θ的取值范圍.
分析:(Ⅰ)依題意可求A,B進而可求拋物線E的方程
(Ⅱ)聯立方程
y=
k
(x-2)
y2=16x
得:kx2-(4k+16)x+4k=0,根據方程有兩個不等的根,結合韋達定理可得k的范圍,進而可求θ的范圍
解答:解:(Ⅰ)依題意得:A(-4,0),B(4,0)
∴曲線E的方程為y2=16x.-------(2分)
(Ⅱ)由
y=
k
(x-2)
y2=16x
得:kx2-(4k+16)x+4k=0
△=(4k+16)2-16k2>0
k>0

解得:k>0----------(4分)
設設M(x1,y1),N(x2,y2),則:
x1+x2=
4k+16
k
,x1x2=4
AM
AN
=(x1+4,y1)(x2+4,y2)=(x1+4)(x2+4)+y1y2
=(k+1)x1x2+(4-2k)(x1+x2)+16+4k=
64
k
+4≥68----------(6分)
∴0<k≤1,
∴θ∈(0,
π
4
]----------(8分)
點評:本題主要考查了利用拋物線的性質求解拋物線的方程,直線與拋物線方程的相交的處理中,要注意方程的根與系數的關系的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知橢圓
x2
16
+
y2
12
=1,點P為其上一點,F1、F2為橢圓的焦點,Q為射線F1P延長線上一點,且|PQ|=|PF2|,設R為F2Q的中點.
(1)當P點在橢圓上運動時,求R形成的軌跡方程;
(2)設點R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點,若∠AOB=90°時,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
16
+
y2
12
=1
的左焦點是F1,右焦點是F2,點P在橢圓上,如果線段PF1的中點在y軸上,那么|PF1|:|PF2|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
16
+
y2
12
=1
的左焦點是F1,右焦點是F2,點P在橢圓上,如果線段PF1的中點在y軸上,那么|PF1|:|PF2|=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
16
+
y2
9
=1
與x軸交于A、B兩點,焦點為F1、F2
(1)求以F1、F2為頂點,以A、B為焦點的雙曲線E的方程;
(2)M為雙曲線E上一點,y軸上一點P (0,
16
3
)
,求|MP|取最小值時M點的坐標.

查看答案和解析>>

同步練習冊答案