在平面直角坐標(biāo)系xoy中,已知△ABC的頂點(diǎn)A(-4,0)和C(4,0),頂點(diǎn)B在橢圓
x2
25
+
y2
9
=1
上,則
sinA+sinC
sinB
等于( 。
A、
4
5
B、
5
2
C、
5
4
D、
5
3
分析:首先根據(jù)橢圓的方程可得a與b的值,進(jìn)而可得c的值,分析可得,AC就是焦點(diǎn),由正弦定理可得:
sinA+sinC
sinB
=
BC+BA
AC
;結(jié)合橢圓的定義可得AC=2c=8,BC+BA=2a=10;代入數(shù)據(jù)可得答案.
解答:解:根據(jù)題意,由橢圓的方程可得a=5,b=3;
則其焦點(diǎn)坐標(biāo)為(-4,0)和(4,0),恰好是A、C兩點(diǎn),
則AC=2c=8,BC+BA=2a=10;
由正弦定理可得:
sinA+sinC
sinB
=
BC+BA
AC
=
5
4
;
故選C.
點(diǎn)評:解題時(shí),需注意特殊點(diǎn)的“巧合”,如本題中,通過計(jì)算可得,A、C就是焦點(diǎn),進(jìn)而結(jié)合橢圓的性質(zhì),進(jìn)行解題,其次要特別注意焦點(diǎn)三角形的有關(guān)性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案