一個口袋中有紅球3個,白球4個.

(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;

(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).

 

【答案】

(1)(2)

【解析】

試題分析:解(Ⅰ)“恰好第2次中獎”即為“第一次摸到的2個白球,第二次至少有1個紅球”,其概率為

(Ⅱ)摸一次中獎的概率為

由條件知XB(4, P),∴

考點(diǎn):二項(xiàng)分布

點(diǎn)評:解決的關(guān)鍵是根據(jù)排列組合的知識表示概率值,然后借助于獨(dú)立重復(fù)試驗(yàn)來得到,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高三上學(xué)期入學(xué)摸底理科數(shù)學(xué)試卷(解析版) 題型:解答題

一個口袋中有紅球3個,白球4個.

(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求摸2次恰好第2次中獎的概率;

(Ⅱ)每次同時摸2個,并放回,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省高考數(shù)學(xué)沖刺提優(yōu)試卷(理科)(解析版) 題型:解答題

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案