已知點),過點作拋物線的切線,切點分別為(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

當(dāng)且僅當(dāng),即時取等號.

故圓面積的最小值

 

【答案】

,. (Ⅱ)圓的面積為

(Ⅲ)圓面積的最小值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點D(0,-2),過點D作拋線C1:x2=2py(p>0)的切線l,切點A在第一象限,如圖.
(1)求切點A的縱坐標(biāo);
(2)若離心率為
3
2
的橢圓C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好經(jīng)過切點A,設(shè)切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k2,k3,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.
(3)設(shè)P、Q分別是(2)中的橢圓C2的右頂點和上頂點,M是橢圓C2在第一象限的任意一點,求四邊形OPMQ面積的最大值以及此時M點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省實驗中學(xué)2011屆高三5月針對性練習(xí)數(shù)學(xué)理綜試題 題型:044

已知點D(0,-2),過點D作拋線C1:x2=2py(p>0)的切線l,切點A在第一象限,如圖.

(1)求切點A的縱坐標(biāo);

(2)若離心率為的橢圓恰好經(jīng)過切點A,設(shè)切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k1,k2,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.

(3)設(shè)P、Q分別是(2)中的橢圓C2的右頂點和上頂點,M是橢圓C2在第一象限的任意一點,求四邊形OPMQ面積的最大值以及此時M點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案