(2012•江蘇一模)已知函數(shù)f(x)=x+sinx.
(1)設(shè)P,Q是函數(shù)f(x)的圖象上相異的兩點,證明:直線PQ的斜率大于0;
(2)求實數(shù)a的取值范圍,使不等式f(x)≥axcosx在[0,
π2
]
上恒成立.
分析:(1)先利用導數(shù)研究函數(shù)的單調(diào)性,然后設(shè)P(x1,y1),Q(x2,y2),根據(jù)斜率的定義建立關(guān)系式,從而可知可證結(jié)論;
(2)設(shè)Q(x)=g(x)-f(x)=axcosx-x-sinx,x∈[0,
π
2
]
,然后利用導數(shù)研究函數(shù)的最小值,使得Q(x)min≥0即可.
解答:解:(1)∵f(x)=x+sinx
∴f'(x)=1+cosx≥0
∴函數(shù)f(x)在R上單調(diào)遞增
設(shè)P(x1,y1),Q(x2,y2)則
y2-y1
x2-x1
>0
,即kPQ>0
∴直線PQ的斜率大于0;
(2)依題意得,設(shè)Q(x)=g(x)-f(x)=axcosx-x-sinx,x∈[0,
π
2
]
,
1°當a≤0時,Q(x)≤0恒成立; …(8分)
2°當a>0時,Q'(x)=(a-1)cosx-axsinx-1,…(10分)
①0<a≤2時,Q'(x)≤0,Q(x)在[0,
π
2
]
上單調(diào)遞減,
所以Q(x)≤Q(0)=0恒成立;…(12分)
②a>2時,注意到當x∈[0,  
π
2
]
時,x≥sinx,
于是Q(x)=axcosx-x-sinx≥axcosx-2x=x(acosx-2),
必存在x0∈(0,
π
2
)
,使得當x∈(0,x0)時,有Q(x0)>0,不能使Q(x)≤0恒成立.
綜上所述,實數(shù)a的取值范圍為a≤2. …(16分)
點評:本題主要考查函數(shù)的概念、性質(zhì)及導數(shù)等基礎(chǔ)知識,考查靈活運用數(shù)學結(jié)合、分類討論的思想進行探究、分析與解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,過橢圓的右焦點且與x軸垂直的直線與橢圓交于P、Q兩點,橢圓的右準線與x軸交于點M,若△PQM為正三角形,則橢圓的離心率等于
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)觀察下列等式:
13=1,
13+23=9,
13+23+33=36,
13+23+33+43=100

猜想:13+23+33+43+…+n3=
[
n(n+1)
2
]2
[
n(n+1)
2
]2
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)設(shè)數(shù)列{an}的前n項和為Sn,已知Sn+1=pSn+q(p,q為常數(shù),n∈N*),如果:a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求數(shù)列{an}的通項公式;
(3)是否存在正整數(shù)m,n,使
Sn-m
Sn+1-m
2m
2m+1
成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(m,n);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.
求證:BT平分∠OBA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)選修4-2:矩陣與變換
在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.

查看答案和解析>>

同步練習冊答案