精英家教網 > 高中數學 > 題目詳情

如圖,已知橢圓的中心在坐標原點,長軸均為且在軸上,短軸長分別

,,過原點且不與軸重合的直線,的四個交點按縱坐標從

大到小依次為A,B,CD.記,△和△的面積分別為.

(Ⅰ)當直線軸重合時,若,求的值;

(Ⅱ)當變化時,是否存在與坐標軸不重合的直線l,使得?并說明理由.

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網在平面直角坐標系xoy中,如圖,已知橢圓
x2
9
+
y2
5
=1
的左、右頂點為A、B,右焦點為F.設過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設x1=2,x2=
1
3
,求點T的坐標;
(3)設t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關).

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點分別為A1、A2,上、下頂點分別為B1、B2.設直線A1B1的傾斜角的正弦值為
1
3
,圓C與以線段OA2為直徑的圓關于直線A1B1對稱.
精英家教網
(1)求橢圓E的離心率;
(2)判斷直線A1B1與圓C的位置關系,并說明理由;
(3)若圓C的面積為π,求圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2003•北京)如圖,已知橢圓的長軸A1A2與x軸平行,短軸B1B2在y軸上,中心M(0,r)(b>r>0
(Ⅰ)寫出橢圓方程并求出焦點坐標和離心率;
(Ⅱ)設直線y=k1x與橢圓交于C(x1,y1),D(x2,y2)(y2>0),直線y=k2x與橢圓次于G(x3,y3),H(x4,y4)(y4>0).求證:
k1x1x2
x1+x2
=
k1x3x4
x3+x4

(Ⅲ)對于(Ⅱ)中的在C,D,G,H,設CH交x軸于P點,GD交x軸于Q點,求證:|OP|=|OQ|
(證明過程不考慮CH或GD垂直于x軸的情形)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•甘肅三模)如圖,已知橢圓
x2
4
+
y2
3
=1
的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.
(Ⅰ)若點G的橫坐標為-
1
4
,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

同步練習冊答案